

Z production in pPb collisions at LHCb

1

Hengne Li, LHCb collaboration

Hengne Li (South China Normal University) on behalf of the LHCb collaboration

The nuclear matter effects

- * Ultra-relativistic heavy ion collisions can help us to:
 - * Explore phase diagram of nuclear matter
 - * Large systems (AA):
 - * Study QCD matter under extreme conditions (hot nuclear matter effects)
 - * E.g. formation of Quark Gluon Plasma (QGP) at high temperature and/or energy density.
 - * Small systems (pp, pA, ..):
 - * Nucleon structure, intrinsic charm, reflected in the nuclear modifications (cold nuclear matter effects)
 - * also QGP?
 - * Many other things: QED at extreme field strengths, diffractive processes...

Hengne Li, LHCb collaboration

Soft probes, hard probes, EW probes

- * Soft probes:
- * study the QGP medium itself: global characteristics such as multiplicities, correlations, azimuthal asymmetries, etc.. Quarkonium,
- * Hard and electroweak probes:
- * using hard scatterings (pQCD controlled) created before the QGP medium formation, which propagated through the medium, to "probe" (study) the nuclear matter effects of the medium.
- * Heavy flavor hadrons, quarkonium, jets, etc., interact with QGP medium,
- * photon and W/Z bosons, decay before QGP formation, leptonic final states w/o impact by the medium ==> reference for hard probes.

Hengne Li, LHCb collaboration

Z boson production in pPb

- * Electroweak bosons are unmodified by the hot and dense medium created in heavy ion collisions,
- * Their leptonic decays pass through the medium without being affected by the strong interaction.
- * Therefore, electroweak boson productions well "conserved" the initial conditions of the collisions, can be:
 - * used to probe (cold) nuclear effects and constraint nPDFs for Bjorken-x from ~ 10^{-4} to 1 at Q² ~ 10^{4} GeV²
 - * and can be used as a calibration of the nuclear modification of other processes such as heavy quark production

Hengne Li, LHCb collaboration

IHCO HCO

LHCb provides physics studies.

Event 351483885 Run 187340 Fri, 02 Dec 2016 20:56:29

Event display from the proton-lead collisions in 2016

LHCb provides unique datasets for Heavy Ion

[JINST 3 (2008) S08005] [IJMPA 30 (2015) 1530022]

- * LHCb is the only dedicated detector (at LHC) fully instrumented in forward region
- * Unique kinematic coverage $2 < \eta < 5$
- * A high precision device, down to very low-p_T, excellent particle ID, precision vertex reconstruction and tracking.

Vertex Detector reconstruct vertices decay time resolution: 45 fs **Impact Parameter** resolution: 20 µm

> Dipole Magnet bending power: 4 Tm

Hengne Li, LHCb collaboration

The LHCb detector is special

Calorimeters

energy measurement e/γ identification $\Delta E / E = 1 \% \oplus 10 \% / \sqrt{E} (GeV)$

RICH detectors $K/\pi/p$ separation ε(K→K) ~ 95 %, mis-ID $\varepsilon(\pi \rightarrow K) \sim 5\%$

> Tracking system momentum resolution $\Delta p/p = 0.5\% - 1.0\%$ $(5 \, \text{GeV}/\text{c} - 100 \, \text{GeV}/\text{c})$

Muon system µ identification ε(µ→µ) ~ 97 %,

LHCb running modes and kinematic coverage

LHCD THCD

Both the collider mode and fixed-target mode running at the same time:

Hengne Li, LHCb collaboration

Kinematic Acceptance

Hard Probe 2020, 2 June 2020

7

Setups for proton-ion collisions

- frame coverage 2.0 < *y* < 4.5
- * Common range for the measurements: $2.5 < |y^*| < 4.0$

Hengne Li, LHCb collaboration

- ***** Forward production:
 - * Center of mass rapidity coverage: $1.5 < y^* < 4.0$
- * Backward production:

* Center of mass rapidity coverage: $-5.0 < y^* < -2.5$

* Rapidity coverage in center of mass frame considers a rapidity shift of about 0.47 w.r.t. the lab

8

pPbZ boson production

- * Cross-sections measured in fiducial volume for both pPb and Pbp: $\sigma_{Z \to \mu^+ \mu^-} = \frac{N_{\text{cand}} \cdot \rho}{\mathcal{L} \cdot \epsilon_{\text{tot.}}}$
- * Forward-backward ratio measured in fiducial volume + common rapidity coverage:
 - $R_{\rm FB}^{2.5 < |y^*| < 4.0} = \frac{\sigma_{Z \to \mu^+ \mu^-, p \, \rm Pb}}{\sigma_{Z \to \mu^+ \mu^-, Pb \, p}} \bigg|_{2.5 < |y^*| < 4.0}$

[JHEP09(2014)030] [LHCb-CONF-2019-003]

Hengne Li, LHCb collaboration

* Using pPb datasets at 5.02 TeV and 8.16 TeV

	20	13	2016	
$\sqrt{s_{NN}}$	$5.02 { m TeV}$		$8.16 { m TeV}$	
	pPb	Pbp	pPb	Pl
L	1.1 nb^{-1}	$0.5 {\rm ~nb^{-1}}$	13.6 nb^{-1}	20.8

* Fiducial volume: $60 < m_{\mu\mu} < 120 \,\text{GeV}$ $2.0 < \eta^{\mu} < 4.5, \ p_{T}^{\mu} > 20 \,\text{GeV}$

* Purity ρ (signal fraction) is measured using same-sign muon pair and ABCD-method

* Efficiencies are estimated using MC and tag-and-probe data-driven corrections

Hard Probe 2020, 2 June 2020

9

Z boson production in pPb at 5 TeV

* Yields: forward (11 events) / backward (4 events)

Hengne Li, LHCb collaboration

* Integrated luminosity: forward $(1.099 \pm 0.021 \text{ nb}^{-1})$ / backward $(0.521 \pm 0.011 \text{ nb}^{-1})$

[JHEP09(2014)030]

Z boson production in pPb at 5 TeV

- * Fiducial cross-section results:
 - * Forward:

 $\sigma_{Z \to \mu^+ \mu^-}$ (fwd) = $13.5^{+5.4}_{-4.0}$ (stat.) ± 1.2 (syst.) nb

* Backward: $\sigma_{Z \to \mu^+ \mu^-}$ (bwd) = 10.7^{+8.4}_{-5.1} (stat.) ± 1.0(syst.) nb

- * Compatible with theoretical predictions using FEWZ(NNLO pQCD+NLO pEW) with:
 - * MSTW08(PDF) for both p and Pb
 - * MSTW08(PDF) for p and EPS09(nPDF) for Pb

Hengne Li, LHCb collaboration

Z boson production in pPb at 8 TeV

- * Integrated luminosity: forward $(12.2 \pm 0.3 \text{ nb}^{-1})$ / backward $(18.6 \pm 0.5 \text{ nb}^{-1})$
- * Yields: forward (268 events) / backward (167 events)

Hengne Li, LHCb collaboration

[LHCb-CONF-2019-003]

pPb Zboso

- * Integrated luminosity: forward ($12.2 \pm 0.3 \text{ nb}^{-1}$) backward($18.6 \pm 0.5 \text{ nb}^{-1}$)
- Yields: forward (268 events)
 backward (167 events)
- * MC normalized to data yields

[LHCb-CONF-2019-003]

Hengne Li, LHCb collaboration

Hard Probe 2020, 2 June 2020

13

pPb Z boson production at 8 TeV

- * Fiducial cross-section results:
 - $\sigma_{Z \to \mu^+ \mu^-, pPb}$ (forward) $= 28.5 \pm 1.7(\text{stat.}) \pm 1.2(\text{syst.}) \pm 0.7(\text{lumi.}) \text{ nb}$ $\sigma_{Z \to \mu^+ \mu^-, Pbp}$ (backward) $= 13.4 \pm 1.0$ (stat.) ± 1.4 (syst.) ± 0.3 (lumi.) nb
- Much higher precision
- Compatible with theoretical predictions using FEWZ(NNLO pQCD+NLO pEW) with NNPDF3.1(PDF) for p and

for Pb

- * NNPDF3.1(PDF)
- * EPPS16 (nPDF)
- * nCTEQ15 (nPDF)

Hengne Li, LHCb collaboration

Compare with results at 5 TeV [LHCb-CONF-2019-003]

- Results are compatible with previous 5 TeV results from various experiments
- The 20 times higher statistics
 bring higher precision in the
 measurements

Data/Theor

10

* only exp. uncert. shown on data/theory ratio, theo. PDF uncert. shown separately on the line at one.

Hengne Li, LHCb collaboration

LHCb Preliminary pPb, $\sigma(Z \rightarrow l^+ l^-)$ \downarrow LHCb 8.16 TeV ($p_T^{\mu} > 20 \text{ GeV}, 2 < \eta^{\mu} < 4.5$) \downarrow LHCb 5.02 TeV ($p_T^{\mu} > 20 \text{ GeV}, 2 < \eta^{\mu} < 4.5$) \downarrow ALICE 5.02 TeV ($p_T^{\mu} > 20 \text{ GeV}, 2.5 < \eta^{\mu} < 4$) \downarrow CMS 5.02 TeV ($p_T^{l} > 20 \text{ GeV}, \eta^{l} < 2.4$) \downarrow ATLAS 5.02 TeV (full lepton phase space)

 $\sigma_{Z \to \mu^+ \mu^-, pPb}^{2.5 < |y^*| < 4.0} = 17.1 \pm 1.4 (\text{stat.}) \pm 0.7 (\text{syst.}) \pm 0.4 (\text{lumi.}) \text{ nb},$ $\sigma_{Z \to \mu^{+} \mu^{-}, Pb\,n}^{2.5 < |y^{*}| < 4.0} = 13.3 \pm 1.0 (\text{stat.}) \pm 1.4 (\text{syst.}) \pm 0.3 (\text{lumi.}) \text{ nb},$

Measured forward-backward ratio $R_{\text{FR}}^{2.5 < |y^| < 4.0} = 1.28 \pm 0.14 (\text{stat.}) \pm 0.14 (\text{syst.}) \pm 0.05 (\text{lumi.}).$

* Compatible with theoretical predictions: $R_{\rm FB,NNPDF3.1}^{2.5 < |y^*| < 4.0} = 1.59 \pm 0.10$ (theo.) ± 0.01 (num.) ± 0.05 (PDF), $R_{\rm FB,NNPDF3.1+EPPS16}^{2.5 < |y^*| < 4.0} = 1.45 \pm 0.10 (\text{theo.}) \pm 0.01 (\text{num.}) \pm 0.27 (\text{PDF}),$ $R_{\rm FB,NNPDF3.1+nCTEQ15}^{2.5 < |y^*| < 4.0}$ $= 1.44 \pm 0.10$ (theo.) ± 0.01 (num.) ± 0.20 (PDF).

Hengne Li, LHCb collaboration

LHCb-CONF-2019-003

*Forward-backward ratio is derived based on cross-sections measured in the common rapidity range:

Conclusion

- * The LHCb detector is the only dedicated forward detector.
 - * Capabilities can also be applied to relativistic heavy ion collisions.
- * Recent results from LHCb on Z boson production have been discussed
 - * Currently the most precise results at forward rapidity region
- * Rich EW probe program is on going at LHCb:
- * W, Z, and low mass DY at pPb and PbPb collisions

	2013 pPb 1.6 nb ⁻¹	2016 pPb 35 nb ⁻¹	2015 PbPb 10 μb ⁻¹	2018 PbPb 210 μb ⁻¹
Z	published	conf note->paper	to be studied	to be studied
W		to be studied	to be studied	to be studied
D-Y		to be studied	to be studied	to be studied

Hengne Li, LHCb collaboration

Hengne Li, LHCb collaboration

