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1. Abstract
We study the measurements of the background by the ALICE col-
laboration [1] in TennGen (a data-driven random background gen-
erator) and PYTHIA Angantyr simulations of Pb+Pb collisions. The
standard deviation of the energy in random cones in TennGen is
approximately in agreement with the form predicted in the ALICE
paper, with deviations of 1–6%. The standard deviation of energy
in random cones in Angantyr exceeds the same predictions by ap-
proximately 40%. Deviations in both models can be explained by
the assumption that the single particle d2N/dydpT is a Gamma dis-
tribution in the derivation of the prediction. This indicates that model
comparisons are potentially sensitive to the treatment of the back-
ground. This work has been submitted for publication [2].

2. Models
No reconstruction efficiency correction in [1]→ parameterized pT -
dependent efficiency roughly matching ALICE efficiency in [3]
2.1 TennGen
For Nch from [4]. Even n ψn at φ = 0, odd n at random φ.
• Throw random pT from Blast Wave [5] fit to [6].
•Use that pT to determine vn from fits to [7]. v1 roughly matches [8,

9, 10].
• Throw random φ from azimuthal distribution with those vn.
• Throw random η from flat distribution within −0.9 < η < 0.9

2.2 PYTHIA Angantyr
PYTHIA Angantyr [11] is a Monte Carlo model for heavy ion colli-
sions included in PYTHIA 8[11, 12].
• superposition of nucleon-nucleon collisions and including inelas-

tic collisions, single-diffractive, double-diffractive, and absorptive
collisions w/fluctuating radii
•No flow, no jet quenching
•Used with default parameters, 20 · 103 min bias 2.76 TeV Pb+Pb

collisions, 200 GeV Au+Au collisions.
•Used the centrality class implemented in Rivet [13]

3. Background density ρ
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Figure 1: Median event by event ρ vs. Nraw
input for TennGen and An-

gantyr Pb+Pb collisions at √sNN = 2.76 TeV. The line is from the fit
of a straight line to Angantyr.

•Run kT jet finder
• For Angantyr, throw out two leading jet candidates
• Find median p/A

4. δpT = precoT − Aconeρ width distribution

• Assume Gamma distribution d2N
dydpT

∝ k
Γ(p)

(kpT )p−1e−kpT [14, 1]

• Fit δpT distribution in fig. 2→ width.
•No flow:

σδpT =
√
Nσ2

pT + N〈pT 〉2. (1)

•With flow:
σδpT =

√√√√Nσ2
pT + (N + N2

∞∑
n=1

v2
n)〈pT 〉2. (2)

assuming vn constant and uncorrelated with each other.

Figure 2: Comparison of TennGen and Angantyr to 0–10% central
Pb+Pb collisions at √sNN = 2.76 TeV data from [1].

5. δpT Widths

5.1 TennGen

Figure 3: Comparison of the δpT distribution’s width in TennGen
with vn =0 compared to eq. 1 and non-zero vn compared to eq. 2.

•Deviations of 1–2% without flow due to deviations in d2N
dydpT

from
Gamma distribution.
•Deviations of up to 6% due to momentum dependence of flow,

correlations between different terms.

5.2 Angantyr

Figure 4: Comparison of the δpT distribution’s width in Angantyr for
Pb+Pb collisions at √sNN = 2.76 TeV with eq. 1 with zero, one, and
two leading jets omitted from the sample.

•Up to 40% deviations from random distribution predicted by eq. 1.
•Not significantly reduced by excluding jets

Figure 5: Comparison of the δpT distribution’s width in Angantyr for
Au+Au collisions at √sNN = 200 GeV and Pb+Pb collisions at √sNN
= 2.76 TeV compared to eq. 1.

• Fewer jets expected at RHIC energies
• Little collision energy dependence → deviations not likely from

jets!

Figure 6: Comparison of the δpT distribution’s width in Angantyr for
Pb+Pb collisions at √sNN = 2.76 TeV with tracks with randomized
azimuthal angles compared to eq. 1.

•Deviations persist when correlations broken by randomly dis-
tributing particles → caused by deviations of spectrum from
Gamma distribution.

6. Conclusions

• These studies broadly support conclusions in [1] that background
is dominantly random fluctuations.
• Effects of up to 6% from shape of the spectrum, flow modulations
• Flow, spectral shape can lead to large deviations from eq. 1, 2in

models
• Important to implement background subtraction technique ap-

plied in data to models→ See ”Implementation of heavy ion mea-
surements in Rivet [15]!”
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