Light-by-light scattering and search for axion-like particles with the CMS detector

The very strong electromagnetic fields found in PbPb collisions at the LHC make it effectively a photon-photon collider. Observation of the light-by-light scattering process, $\gamma\gamma \rightarrow \gamma\gamma$, in ultraperipheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV recorded in 2018 by the CMS experiment is reported. The exclusive production of dielectrons is used as a process of similar production mechanism and experimental signature to control both the theoretical modeling and the reconstruction of low energy electromagnetic objects in the detector. Differential distributions in diphoton p_T, rapidity, mass, and acoplanarity are reported. The $m_{\gamma\gamma}$ distribution is used to set new exclusion limits on the production of pseudoscalar axion-like particles, via the $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$ process, down to 5 GeV.

Collaboration (if applicable)

CMS

Track

Electroweak Probes

Contribution type

Contributed Talk

Primary author: PETRUSHANKO, Serguei (M.V. Lomonosov Moscow State University (RU))

Presenter: PETRUSHANKO, Serguei (M.V. Lomonosov Moscow State University (RU))

Track Classification: Electroweak Probes