

D* production vs multiplicity in pp

collisions at $\sqrt{s} = 13$ TeV at the LHC

Marco Giacalone for the ALICE collaboration

Physics Motivation

- The analysis of the D*-meson production as a function of multiplicity in pp collisions allows us to investigate the role of multi-parton interactions \rightarrow they are expected to have a relevant role at high multiplicity in pp collisions at LHC energies
- Average D mesons and J/ ψ measurement at 7 TeV show a stronger than linear increase
- New analysis at higher center of mass energy $\sqrt{s} = 13$ TeV and with a larger data sample allows us to improve the precision of the results

The Experiment

ALICE excellent capabilities for tracking and particle identification (PID) were used for the analysis discussed in this poster using in particular the detectors:

- Inner Tracking System (ITS), $|\eta| < 1 \rightarrow$ vertexing, tracking and multiplicity estimator
- Time Projection Chamber (TPC), $|\eta| < 0.9 \rightarrow PID$ and tracking
- Time Of Flight (TOF), $|\eta| < 0.9 \rightarrow PID$

Datasets considered:

2018 High Multiplicity triggered data (HMSPD) \rightarrow ~115×10⁶ in the multiplicity interval considered

Multiplicity estimator

- Multiplicity is defined as the number of tracklets reconstructed in the SPD (N_{trk}) of the ITS
- The product of acceptance and efficiency of the detector depends on $Z_{vtx} \rightarrow$ different for each data taking period
- $N_{\rm trk}$ were corrected event-by-event leading to a flat profile

Signal extraction

- Decay channel $D^{*+} \rightarrow D^0 \pi^+$ (and charge conjugate)
- Topological and PID selections applied to pair a D^0 candidate ($D^0 \rightarrow K^-\pi^+$ and c. c.) with a soft pion at the primary vertex
- Fit performed on the invariant mass plots using a Gaussian function for the signal exponential with power function background

Results

- The invariant mass plots shown in three different multiplicity intervals in the same p_T : MB events, 1-8 and 60-99 tracklets (HMSPD)
- Raw yields per event vs N_{trk} for each p_T interval share a similar shape \rightarrow more signal obtained in the intermediate $p_{\rm T}$ intervals
- Statistics is sufficient to extend the normalized analysis to higher p_T and higher event multiplicities with respect to those at 7 TeV \rightarrow to be done as next steps

SPD tracklets $|\eta|$ < 1

ALICE, pp $\sqrt{s} = 7 \text{ TeV}$

Prompt J/ $\psi \rightarrow e^+e^-$, |y|<0.9, $\rho_{\tau}>0$

Average D^0 , D^+ , D^{*+} meson |y| < 0.5, $2 < p_{\pm} < 4 \text{ GeV}/c$

B fraction hypothesis: \times 1/2 (2) at low (high) multiplicity

 $(dN_{ch}/d\eta) / \langle dN_{ch}/d\eta \rangle$

 $Z_{\rm vtx}$ (cm)

