1. Physics Motivation

- Charm quarks are ideal probes of the QGP:
 - Produced in hard scatterings.
 - p_T-differential cross section calculable with pQCD-based models.

- D^0-tagged jets
 - Improve background jets rejection.
 - Investigation of the jet spectrum down to low p_T.
 - Study of the mass dependence of parton energy loss.

2. Tagging jets with D^0

- Exploiting the excellent particle identification capabilities of the ALICE detector. Kinematic and topological selections are applied to the D^0 candidates.
 - D^0 particles are reconstructed through the hadronic decay channel $D^0 \rightarrow K\pi$ with an invariant mass analysis.

- Jets are reconstructed using anti-k_T algorithm. D^0 daughters are replaced by D^0 4-momentum vector in jet constituents.

3. D^0-tagged jet p_T spectrum

- Obtained by subtracting background from the signal region of the D^0 invariant mass analysis using the spectrum from the side-band region normalized by the background in the signal region (N).
 - $\text{Signal}_{\text{corr}} = \text{Signal}_{\text{raw}} - N \cdot \text{Background}$

- POWHEG+PYTHIA6 simulations are used to remove the feed-down contribution from bottom quark decays.

- Bayesian unfolding was applied in the D^0-tagged jet p_T spectrum. The p-Pb measurement is used as reference.

4. Nuclear modification factor

- Indication of strong suppression of D^0-tagged jet production in central Pb-Pb collisions.

- D^0-tagged jet R_{AA} compatible with the R_{AA} of average D mesons. Inclusive jets follow similar trend at high p_T.

- ALICE plans to extend the kinematic range and precision in this analysis using the 2018 data. This work is in progress.