D⁰-tagged jets in heavy-ion collisions with ALICE at the LHC

Antonio Carlos Oliveira da Silva on behalf of the ALICE Collaboration University of Tennessee - Knoxville

1. Physics Motivation

Charm quarks are ideal probes of the QGP: Produced in hard scatterings.

*p*_T-differential cross section calculable with pQCD-based models.

• D⁰-tagged jets

- Improve background jets rejection.
- Investigation of the jet spectrum down to low p_{T} .
- Study of the mass dependence of

2. Tagging jets with D⁰

Exploiting the excellent particle identification capabilities of the ALICE detector. Kinematic and topological selections are applied to the D⁰ candidates.
O⁰ particles are reconstructed through the hadronic decay channel D⁰ → Kπ with an invariant mass analysis.
Jets are reconstructed using anti-k_T algorithm. D⁰ daughters are replaced by D⁰ 4-momentum vector in jet constituents.

parton energy loss.

3. D⁰-tagged jet p_{T} spectrum

- Obtained by subtracting background from the signal region of the D⁰ invariant mass analysis using the spectrum from the side-band region normalized by the background in the signal region (N).
 - Signal_{corr} = Signal_{raw} N*Background

4. Nuclear modification factor

- POWHEG+PYTHIA6 simulations are used to remove the feed-down contribution from bottom quark decays.
- Bayesian unfolding was applied in the D⁰-tagged jet p_T spectrum. The p-Pb measurement is used as reference.

- Indication of strong suppression of D⁰-tagged jet production in central Pb-Pb collisions.
- D⁰-tagged jet R_{AA} compatible with the R_{AA} of average D mesons. Inclusive jets follow similar trend at high p_T.
- ALICE plans to extend the kinematic range and precision in this analysis using the 2018 data. This work is in progress.