

Klaudia Maj, for the ATLAS Collaboration

MOTIVATION

Previous LHC measurements:

Light-by-light scattering is a rare O(α_{FM}^{4}) QED process ightarrow can be observed in heavy-ion collisions due to large EM fields associated with relativistic ions ightarrow sensitive to NEW Physics (axion-like particles, aQGC, ...)

Exactly two photons with $E_{\rm T} > 2.5$ GeV and $|\eta| < 2.37$ linvariant diphoton mass $m_{\gamma\gamma} > 5$ GeV ► Veto extra activity in ID \rightarrow No tracks with $p_T > 100$ MeV \rightarrow No pixel tracks with $p_T > 50$ MeV and $|\Delta \eta(\gamma, track)| < 0.5$ Back-to-back topology $ightarrow p_T^{\gamma\gamma} < 1$ GeV (2 GeV for

 $m_{\gamma\gamma} > 12 \,\, {
m GeV})$ \rightarrow Acoplanarity $(=1-\frac{|\Delta\phi|}{\pi}) < 0.01$

This analysis: ► Combine 2015 and 2018 Pb+Pb data with $2.2nb^{-1}$

► ATLAS Nat. Phys. 13 (2017) 852 (\sim 4 σ evidence)

Differential cross-section measurements

► CMS Phys. Lett. B 797 (2019) 134826

► ATLAS Phys. Rev. Lett. 123 (2019) 052001

► BSM interpretation: search for the production of axion-like particles (ALP)

PHOTON IDENTIFICATION

Photon reconstruction:

► Using e+e- events where a hard bremsstrahlung photon was radiated

 $(\sim 4\sigma \text{ evidence})$

 $(8.2\sigma \text{ observation})$

► Efficiency is 60% for $E_T = 2.5$ GeV, and reaches 90% at $E_T = 6$ GeV

Photon identification:

- ► Using $\gamma \gamma \rightarrow I^+ I^- \gamma$ events
- ► Neutral network based PID, optimized for low- E_T photons
- ► Efficiency exceeds 90%

Good modelling in MC simulation

Differences between data and MC simulation included in dedicated corrections

AGH University of Science and Technology This work was supported in part by the National Science Centre, Poland, grant DEC-2016/23/B/ST2/01409 and by PL-Grid Infrastructure

Light-by-light scattering in ultra-peripheral Pb+Pb collisions in the ATLAS experiment

ATLAS Preliminar

using $\gamma\gamma \rightarrow e^+e^-$ process in data

- Triggered by independent support triggers
- Efficiency at Level-1 improved in 2018 wrt. 2015
- Applied to simulated events to correct yields

higher than 99%

BACKGROUND PROCESSES

yy acoplanarit

m_a [GeV]

- 27 ± 5 events

HP2020, 31.05-05.06.2020

AGH

