Measuring the groomed shared momentum fraction (z_g) in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR using a semi-inclusive approach

Daniel B Nemes (Yale University), for the STAR Collaboration
daniel.nemes@yale.edu

Abstract: This poster presents an ongoing analysis of measuring the jet substructure observable z_g, which probes the physics of the first hard splitting of a hard-scattered parton, in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. This analysis employs a semi-inclusive approach, selecting candidate jets found within the recoil region of high transverse momentum trigger particles. Contributions from combinatorial jets due to the large fluctuating background is subtracted at the ensemble level using a mixed-event technique.

Groomed Shared Momentum Fraction z_g

- z_g is the momentum fraction of the subleading jet groomed using SoftDrop [1] (defined here with $\alpha_s = 0.1, \beta = 0$)

$$z_g = \frac{\text{Min}(p_T^1, p_T^2)}{p_T^1 + p_T^2} > 0.1$$

- Previously measured in STAR for Au+Au collisions [2] using a HardCore selection of dijets to eliminate combinatorial jets
 - No modification of z_g found compared to p_T-smeared Au+Au
 - Requiring a high-p_T particle in jets can induce surface bias
 - Is there a different selection of jets in Au+Au collisions at RHIC energies in which z_g is modified?

Using Mixed Events to Remove Combinatorial Jets

- Same Events (SE) require a BEMC tower with $p_T > 9$ GeV

- Mixed Events (ME) are minimum-bias (MB) events with charged tracks mixed such that particle correlations are destroyed

- Events binned and sampled in classes of event vertex position along the beam direction, luminosity, event-plane angle and charged track multiplicity

- Event mixing and combinatorial jet subtraction independently done for 0-10% and 10-20% centrality

- Unlike SE, no jets excluded when calculating ME p_T, the event-wise background density

SE and ME z_g Distributions

- Both event classes are background subtracted using Constituent Subtraction [4] at the jet-level
- Zero bin filled by jets which do not pass the SoftDrop criterion
- SE and ME z_g have distinct shapes, especially important at low p_T where combinatorial jet contribution is significant

Combinatorial-subtracted z_g

- Combined 0-20% centrality detector level jets with $20 < p_T^{\text{jett}} < 25$ GeV/c

- Insensitive to details of combinatorial subtraction in this p_T range (~5% combinatorial jets in SE for 0-10% central, less for 10-20% central)

- Comparison to smeared PYTHIA-6 embedded into MB 0-20% Au+Au events

- No significant modification found in this p_T region compared to PYTHIA-6

Summary and Outlook

- Measured z_g for 0-20% central events within $20 < p_T^{\text{jett}} < 25$ GeV/c bin which is insensitive to details of combinatorial subtraction
- No clear z_g modification observed for $20 < p_T^{\text{jett}} < 25$ GeV/c compared to smeared PYTHIA-6 baseline embedded into Au+Au events
- Plan to utilize this semi-inclusive approach to measure z_g down to lower jet p_T without inducing a strong surface or fragmentation bias

References

The STAR Collaboration

https://drupal.star.bnl.gov/STAR/presentations