Measurement of semi-inclusive jet fragmentation functions in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV in STAR

Saehanseul Oh (LBNL) for the STAR Collaboration
saehanseul.oh@lbl.gov

Abstract

In this poster, we report a measurement of the jet fragmentation functions in peripheral Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV by the STAR experiment at RHIC, using a semi-inclusive population of jets recolliding from trigger hadrons of large transverse energies. The mixed-event technique along with the semi-inclusive approach is used in the measurement in order to remove uncorrelated background contributions. The fragmentation functions are further corrected for background fluctuations and instrumental effects via unfolding, and the results are compared with PYTHIA predictions.

Introduction

- Jets probe the strongly interacting QCD medium
 - Hard-scattered partons are generated at the early stages of heavy-ion collisions
 - Interactions between jets and the QCD medium modify the parton shower relative to that in vacuum

- Jet fragmentation function dN/dx:
 - Distribution of longitudinal momentum fraction of particles with respect to the jet
 - How does it change in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV relative to the vacuum reference?

Corrections

- Jet fragmentation function dN/dx (p_T^{jet}) for tracks within 4π for $R = 0.4$
- Semi-inclusive approach:
 - Charged jets are selected in the recoil region with respect to high momentum trigger particles (BEMC tower with $9.0 < E_T < 30.0$ GeV), $|\eta^{jet} - \eta^{trig}| > \pi/4$
 - This enables us to suppress the uncorrelated background contributions

Background jet

- In the recoil region, there are signal jets, correlated to the trigger particle, and background jets, uncorrelated to the trigger particle
- In signal jets, there are uncorrelated particles

Correction for background jets

- For $N_{sij}(p_T^{jet})$, $N_{iij}(p_T^{jet}) = N_{sij}(p_T^{jet}) - N_{iij}(p_T^{jet})$
- Jets in same events
- Jets in mixed events
- $N_{iij}(p_T^{jet})$ are fitted to $N_{ij}(p_T^{jet})$ in the negative p_T^{jet} range, where uncorrelated jets dominate

Correction for uncorrelated particles

- For dN/dz, contributions from uncorrelated particles are estimated using $dN_{ij}(p_T^{jet},z)dz$ according to the background jet fraction in each p_T^{jet} bin

Results

- $N_{ij}(p_T^{jet})$ and $dN(p_T^{jet},z)/dz$ are separately unfolded via 1-D and 2-D Bayesian unfolding for instrumental effects and background fluctuations
- Fully corrected charged jet fragmentation functions for 40-60% centrality class and three p_T^{jet} ranges
- Variations of fragmentation function priors in unfolding are not included in the systematic uncertainties

Summary and Outlook

- Fully corrected semi-inclusive charged jet fragmentation functions in 40-60% central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV are studied
- The results for three p_T^{jet} ranges are comparable to PYTHIA 8, but PYTHIA 8's reliability at RHIC energies is under question
- Results for central Au+Au and p+p collisions are on their way

References

The STAR Collaboration
https://drupal.star.bnl.gov/STAR/presentations