MPI dependence of the near and away side p_T spectra for pp, p-Pb and Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE detector at the LHC

Sushanta Tripathy (For the ALICE Collaboration)

(GeV/c)

 ∂^{\perp}

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico Email: Sushanta.Tripathy@cern.ch

1. Introduction and Motivation

 \rightarrow In this work, we study particle production as a function of the relative transverse activity classifier, $R_{\tau} =$ $N_{ch}^{TS}/\langle N_{ch}^{TS}\rangle$, where N_{ch}^{TS} is the multiplicity measured in the transverse side [1-3].

 \rightarrow Using a Bayesian unfolding technique [4], p_{τ} spectra as a function of R_{τ} for the near, away and transverse sides in pp, p-Pb and Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV are obtained and compared with EPOS-LHC and PYTHIA 8,244 (ANGANTYR).

The analysis investigates effects of Multi-Partonic Interaction (MPI) in different collision systems and presents a search for possible jet quenching effects in small systems.

2. Transverse Momentum (p_T) Spectra

Both PYTHIA 8.244 (ANGANTYR) and EPOS-LHC models describe data qualitatively for all collision systems. However, the quantitative disagreement is quite significant, especially in near and away sides.

[1] T. Martin, P. Skands and S. Farrington, Eur. Phys. J. C 76, 299 (2016). [4] M. Krüger. PoS Vol. 336 (2019) 236. [2] A. Ortiz and L. Valencia Palomo, Phys. Rev. D 96, 114019 (2017). [5] ALICE, Phys. Rev. Lett. 108 (2012) 092301. [3] ALICE, JHEP 04 (2020) 192.

[6] ALICE, Phys. Lett. B 741 (2015) 38-50.

pp \(s = 5.02 \text{ TeV} \) p-Pb √s,,, = 5.02 TeV ✓ At $R_{\tau} = 0$, $\langle p_{\tau} \rangle$ is similar across collision systems for ALICE PRELIMINARY Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV all topological regions. Away Side

Transverse Side 0000000000000 0.5≤p_<8 GeV/c, |n|<0.8 Dashed line: EPOS LHC

✓ For pp and p-Pb collisions, the $\langle p_T \rangle$ for transverse side increases with increasing $\langle R_{\tau} \rangle$. Near and away sides give a larger $\langle p_{\tau} \rangle$ than transverse side. For Pb-Pb collisions, the $\langle p_{\tau} \rangle$ is flat and similar for the three regions except at $R_{\tau} = 0$. PYTHIA/ANGANTYR: does a good job for pp and Pb-Pb but worse for p-Pb (likely due to underestimation of

binary scaling of hard processes)

√ EPOS LHC: does a good job but seems to.

Models deviate quantitatively from the data, however, they predict underestimate UE activity for pp and p-Pb similar trend like data

3. Mean Transverse momentum ($\langle p_T \rangle$)

Absence of jet quenching in pp and p-Pb collisions at the LHC

5. Summary The p_T spectra as a function of R_T for the near, away and transverse sides in pp, p-Pb and Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV are studied. These data will help to constrain MC predictions.

► Particle production in p-Pb collisions behave like pp rather than Pb-Pb. This suggests the presence

of MPI in both pp and p-Pb collisions as proposed in [6].

> In contrast to Pb-Pb collisions, no enhancement (suppression) of $I_{pp,p-Pb,Pb-Pb}$ is seen for NS (AS) in pp and p-Pb collisions. Based on these results, no hint of jet quenching in small systems is observed

Acknowledgements

Support for this work is

received from DGAPA-UNAM postdoctoral

fellowship and from CONACyT project

under the Grant No. A1-S-22917.