## **Electroweak Probes: Experimental Overview**



HP 2020, 2 June

#### Overview

- Results from  $\gamma\gamma$  to di-lepton, a "new" QGP observable?
  - Can we find a new EM probe of the QGP? New observable for fundamental properties of QGP?
- Di-lepton continuum, an "old" QGP observable
  - Can we refine a thermal probe of QGP?
- EW bosons for nPDF and centrality studies
  - Can we learn everything we need to know 'before' the QGP?



- ATLAS & STAR have measured di-lepton production from photon interactions in hadronic collisions complementing UPC
- Question remains,
  - Can we learn about the QGP itself, EM degrees of freedom (?), from these observables?
  - Is QED sufficient to explain observables?

[PRL 122 (2019) 132301, PRC99 (2019) 044901, PLB 800 (2020) 135089 ]



#### ATLAS-CONF-2019-051



STAR, PRL. 121 (2018) 132301 [W. Zha et al. PLB 800 (2020) 135089] (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)(

-QED

0.004

 $P_{I}^{2}$  (GeV/c)<sup>2</sup>

- Identify  $\gamma \gamma \rightarrow ll$  in hadronic collisions
- Momentum broadening observed
- Centrality dependence of broadening observed
- QED calculations seem to reproduce effect (at least qualitatively)





- Identify  $\gamma \gamma \rightarrow ll$  in hadronic collisions
- Momentum broadening observed
- Centrality dependence of broadening observed
- QED calculations seem to reproduce effect (at least qualitatively)
- First  $\gamma \gamma \rightarrow \mu \mu$  results from STAR
  - Consistent with hadronic interaction cocktail for  $p_T$ >0.15 GeV
  - Qualitative agreement with  $\gamma\gamma$  QED calculations for p<sub>T</sub><0.15





- CMS measurement of EM b dependence using forward n multiplicity
- Characterize 'core' pairs acoplanarity of di-muons as f(#n)





- CMS measurement of EM b dependence using forward n multiplicity
- Characterize 'core' pairs acoplanarity of di-muons as f(#n)



HP 2020, 2 June

#### Di-Electron Continuum & Low $p_T \gamma$

- Program of study dating back ~40 years
- Ultimate goal to connect back to parton deconfinement and chiral symmetry
- Active directions (with new results):
  - Direct photons
  - STAR Beam energy scan
  - ALICE pp & pPb at 5 TeV  $\rightarrow$  R<sub>pPb</sub>
  - ALICE soft di-electrons at 13 TeV pp
- Filling in pieces of the puzzle ...



#### **Direct Photon Scaling**



- Low p<sub>T</sub> photons may be probing thermodynamics
- PHENIX observes scaling across energy/system size with only two parameters
- Photon production same in all these systems?
  - →Suggestive of *some* commonality



#### Di-Electrons Results w/BES



- STAR is filling in the 'map' of the dielectron continuum as a function of energy
- Higher statistics and precision even at low energies will allow differential measurements



#### Di-Electrons Results w/BES



- STAR is filling in the 'map' of the dielectron continuum as a function of energy
- Higher statistics and precision even at low energies will allow differential measurements
   → Moving towards a complete picture



#### Di-Electrons in pp & pPb @5 TeV



- Cocktail describes ALICE pp data
   well, fits well with 7&13 TeV
- pPb data also well described by cocktail



#### Di-Electrons in pp & pPb @5 TeV



- Cocktail describes ALICE pp data
   well, fits well with 7&13 TeV
- pPb data also well described by cocktail
- R<sub>pPb</sub> emphasizes that there are many ingredients at play that still need to be sorted out (CNM vs thermal, and heavy flavor contributions are still an issue)



#### Di-Electron Excess pp @ 13 TeV



- 30 year old di-electron excess @ISR
- Inspired special low field ALICE run @ 13 TeV



#### Di-Electron Excess pp @ 13 TeV





- 30 year old di-electron excess @ISR
- Inspired special low field ALICE run @ 13 TeV
- Excess observed at 1.6 sigma level
  - The story continues with ALICE upgrades ...



#### EW Bosons and nPDF

- What do we need to understand *before* a QGP?
  - Initial state
  - Collision geometry
- EW bosons are our built in control for hard scattering processes
- Especially in pPb among the best probes of nPDF modification @LHC
  - Preponderance of evidence favoring modification





#### Drell-Yan Measurement in pPb





- CMS made first measurement of Drell-Yan in pPb!
- Overall reasonable agreement with pQCD calculations



#### Drell-Yan Measurement in pPb

CMS-PAS-HIN-18-003



| Observable                                       | CT14     |     |           | CT14+EPPS16 |     |           |
|--------------------------------------------------|----------|-----|-----------|-------------|-----|-----------|
|                                                  | $\chi^2$ | dof | Prob. [%] | $\chi^2$    | dof | Prob. [%] |
| $m_{\mu\mu}$ (GeV)                               | 27       | 13  | 1.1       | 25          | 13  | 2.2       |
| $y_{\rm CM} \ (15 < m_{\mu\mu} < 60 { m GeV})$   | 6.3      | 12  | 90        | 5.7         | 12  | 93        |
| $p_{\rm T}$ (GeV) (15 < $m_{\mu\mu}$ < 60 GeV)   | 13       | 8   | 13        | 7.6         | 8   | 47        |
| $\phi^* \ (15 < m_{\mu\mu} < 60 \ { m GeV})$     | 7.4      | 9   | 59        | 8.3         | 9   | 51        |
| $y_{\rm CM} \ (60 < m_{\mu\mu} < 120 {\rm GeV})$ | 51       | 24  | 0.11      | 33          | 24  | 9.7       |
| $p_{\rm T}$ (GeV) (60 < $m_{\mu\mu}$ < 120 GeV)  | 29       | 17  | 3.5       | 53          | 17  | 0.002     |
| $\phi^*~(60 < m_{\mu\mu} < 120{ m GeV})$         | 25       | 17  | 9.1       | 44          | 17  | 0.03      |

- CMS made first measurement of Drell-Yan in pPb!
- Overall reasonable agreement with pQCD calculations
- Close look seems to indicate some room for improvement on possible mismodeling



#### Forward W in pPb





- ALICE measured W boson in forward muon decays
- Precision data but low sensitivity to nPDF effects



#### Forward Z in pPb & PbPb



HP 2020, 2 June

- Z boson measured in forward muon decays by ALICE & LHCb
- Precision pPb data but low sensitivity to nPDF differences



#### Forward Z in pPb & PbPb

#### arXiv:2005.11126





- Z boson measured in forward muon decays by ALICE & LHCb
- Precision pPb data but low sensitivity to nPDF differences
- PbPb data clearly favor modification of free PDF





- Mid-rapidity Z → ee/µµ measured by ATLAS and CMS
- Largely insensitive to nPDF vs PDF
- If anything ATLAS data seems to slightly disfavor nPDF



#### EW bosons and PbPb Centrality (ATLAS)



- Are nPDF actually (slightly) disfavored?
- Rapidity distribution is fairly compatible, normalization is off
- Check integrated yield vs centrality and ask if there is "Shadowing in inelastic nucleon-nucleon cross section?" (<u>arXiv:2003.11856</u>)

#### EW bosons and PbPb Centrality



- Are nPDF actually (slightly) disfavored?
- Rapidity distribution is fairly compatible, normalization is off
- Check integrated yield vs centrality and ask if there is "Shadowing in inelastic nucleon-nucleon cross section?" (<u>arXiv:2003.11856</u>)
- Take the yields rather than Glauber model as start, and fit for  $\sigma_{\rm NN}$
- (Does this hold up?)



#### Forward W and PbPb Centrality



ALICE Forward W bosons show • clean T<sub>AA</sub> scaling





- Z boson data shows clear 'suppression' in peripheral events
- Consistent with HG-Pythia, but at odds with ATLAS data





- Z boson data shows clear 'suppression' in peripheral events
- Consistent with HG-Pythia, but at odds with ATLAS data
- Photons look similar



#### So about those Zs...

- There is *clear tension* between ATLAS and CMS Z bosons yields in peripheral PbPb collisions @5.02 TeV
  - (It's not easy to quantify brand new preliminary data in slightly different binning but) eyeballing it looks to be ≈ 3 sigma
  - Each result is really two measurements  $e/\mu$
  - Is this a Z boson issue or a centrality issue?

Peripheral Yield/T<sub>AA</sub> Doesn't Drop

- ATLAS Z data is supported by ATLAS W data
  - x8  $W^{\pm} \rightarrow e/\mu$
- ALICE W data
  - x2, W<sup>±</sup>, but precision not as high
- →HG-Pythia model is not the whole story or is wrong
- $[\rightarrow$ Slight tick *upwards* impetus for shadowing in  $\sigma_{NN}$ ]

#### Peripheral Yield/T<sub>AA</sub> Drops

- CMS Z data is supported by CMS photon measurement
  - Only mild sensitivity in one 50-100% bin
- →Strong confirmation of HG-Pythia model
- [ $\rightarrow$ Presumably disfavors shadowing in  $\sigma_{NN}$ ]

## Summary

- Electroweak probes are a crucial part of the field as:
  - Intrinsically interesting probes
    - Where does the di-electron excess come from and how does it map to the parameters we know?
    - What can we say about the initial nuclear state from our EW boson measurements?
    - Are there EM signatures of the QGP hiding in di-lepton pairs?
  - Key to understanding other measurements
    - Can we prove or even improve our understanding of collision geometery based on EW measurements?
- High-quality results from RHIC & LHC experiments are answering questions and raising new ones
- There seems to be a significant discrepancy between ATLAS and CMS on Z boson yields with implications for above questions
- Many great results that I didn't get to:
  - EW boson + jet Control the parton scattering with EW selection
  - Z tagged & photonuclear event  $v_2$  Control the collision with EW selection
  - Light by light scattering studies QED (and BSM...) studies
- [NA60+ hoping to make measurements @SPS in Run 4 ...]

