Theories for quarkonia production (mainly pp and pA)

Yan-Qing Ma
Peking University

10th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions, 2020/05/31-06/05, Online

Outline

I. Introduction

- II. Theories for quarkonia in pp
- III. Theories for quarkonia in pA
- IV. Summary and outlook

Heavy quarkonia

- \succ Bound state of $Q\overline{Q}$ pair under strong interaction
 - The simplest system in QCD: two-body problem
 - Virial theorem + uncertainty principle:

$$mv^2 \sim V(r) \sim r^{-1}\alpha_s(1/r) \& r \sim (mv)^{-1} \Rightarrow \alpha_s(mv) \sim v$$

- > Non-relativistic system: $v^2 \ll 1$
 - Charmonium: $m \sim 1.3 \text{GeV}$, $v^2 \approx 0.3$
 - Bottomonium: $m \sim 4.5 \,\mathrm{GeV},\ v^2 \approx 0.1$
- Multiple well-separated scales :

Quark mass:
$$m$$
Momentum: mv
Energy: mv^2
 $m \gg mv \gg mv^2 \sim \Lambda_{QCD}$

> Involving both pert. and nonpert. physics

Production of heavy quarkonia

> pp: study hadronization mechanism

- Quarkonium production can be traced by heavy quark pair (vs light hadron), unique to explore hadronization mechanism
- Production mechanism?

> pA: study Cold Nuclear Matter effect

- Initial state: nPDF, energy loss, saturation CGC
- Final state: nuclear absorption, comovers
- Need pp as input

> AA: study QGP

- Dissociation, suppression, recombination
- Need pp&pA as input

Theories for extreme p_T

 $ightharpoonup High p_T \gg m$: CO factorization

Kang, Qiu, Sterman, 1109.1520 Kang, YQM, Qiu, Sterman, 1401.0923

- Power expansion, double parton fragmentation
- Resummation of large log $ln(p_T/m)$

- \triangleright Low $p_T \ll m$: k_T -dependent factorization
 - Resum Sudakov log $ln(p_T/m)$
 - Color Glass Condensate: resum small-x log ln(x), higher twist contributions

YQM, Venugopalan, 1408.4075 Watanabe, Xiao, 1507.06564

Theories for $p_T \sim m$

- Color Singlet Model Einhorn, Ellis (1975), Chang (1980) ...
 - √ Simple enough, no free parameter
 - × Over simplified: IR div., cannot derived from QCD with proper approx.
 - imes Pheno: ψ' surplus, ...
- ➤ Color Evaporation Model Fritzsch (1977), Halzen (1977) ...
 - √ Simple enough, one parameter for each quarkonium
 - ✓ Factorization expects to hold to all orders!
 - × Over simplified: cannot derived from QCD with proper approx.
 - imes Pheno: wrong for ratios, p_T distribution, ...
 - Improved-CEM: soft gluon radiation considered, YQM, Vogt, 1609.06042 some pheno problems solved
 - ➤ Non-relativistic QCD

Caswell, Lepage, PLB 1986 Bodwin, Braaten, Lepage, 9407339

Soft gluon factorization

YQM, Chao, 1703.08402 Chen, YQM, 2005.08786

NRQCD: polarization puzzle

 $> J/\psi$ at NLO: transverse polarization largely

canceled (<u>natural?</u>) between ${}^3S_1^{[8]}$ and ${}^3P_J^{[8]}$

Chao, YQM, Shao, Wang, Zhang, 1201.2675

Bodwin, Chung, Kim, Lee, 1403.3612

 $\succ \psi(2S)$ at NLO: cancelation is weak, still hard to understand

Shao, Han, YQM, Meng, Zhang, Chao, 1411.3300

NRQCD: universality problem

- Necessary condition for NRQCD
- LDMEs are process independent
- \triangleright Upper bound of M_0 set by e^+e^- collision

Zhang, YQM, Wang, Chao, 0911.2166 $M_0 < 0.02 \text{GeV}^3$

- Comparing with $M_0 \approx 0.074 \text{ GeV}^3$ from pp collison
- > Global fit of LDMEs

Butenschoen, Kniehl, 1105.0820

$$\chi^2_{\rm d.o.f.} = 725/194 = 3.74$$

Data cannot be described consistently!

Rigorousness of NRQCD factorization

- > Likely a rigorous theory
 - Based on EFT of QCD: NRQCD
 - Double expansion of small quantities: α_s , v^2
 - Factorization has been tested to NNLO
 Nayak, Qiu, Sterman, 0509021
 Bodwin, Chung, Ee, Kim, Lee, 1910.05497
- > Why does it not work for quarkonia production?

The problem: convergence of relativistic expansion!

Soft gluon momentum: convergence

> Soft gluon emission in color-bleaching process

- P_{ψ} is different from P, $P = P_{\psi}[1 + O(\lambda)]$
- NRQCD approximates P by P_{ψ}
- > An over simplified model of NRQCD expansion

Fig from: YQM, Vogt, 1609.06042

• Cross section approximately $\propto P^{-4} = P_{\psi}^{-4} [1 + O(\lambda)]^{-4}$

$$\int_{-1}^{1} \frac{d\cos\theta}{2(1+\lambda+\lambda\cos\theta)^4} = 0.42$$
$$= 1 - 4\lambda + 40/3\lambda^2 - 40\lambda^3 + \cdots$$
$$= 1 - 1.2 + 1.2 - 1.08 + 0.91 - 0.73 + \cdots$$

With
$$\lambda \approx v^2 \approx 0.3$$

Mangano, Petrelli, 9610364

An effect known long time ago, but without a proper treatment

Soft gluon momentum: over subtraction

 \triangleright Eg. χ_{cI} production:

YQM, Wang, Chao, 1002.3987 Braaten, Chen, 9610401

$$d\sigma_{\chi_{cJ}}/(2J+1) \approx d\hat{\sigma}_{3\boldsymbol{P}_{I}^{[1]}} \langle O\left({}^{3}\boldsymbol{P}_{0}^{[1]}\right) \rangle + d\hat{\sigma}_{3\boldsymbol{S}_{1}^{[8]}} \langle O\left({}^{3}\boldsymbol{S}_{1}^{[8]}\right) \rangle$$

- Soft gluon in P-wave: factorized to S-wave matrix element
- Subtraction scheme: at <u>zero momentum</u>, which contributes the largest production rate. Over subtracted! P-wave negative!
- Big cancellation between S-wave and P-wave! Perturbation unstable
- To solve it, soft gluon momentum should be kept in subtraction
- ➤ Similar to the over subtraction problem in single

 Chirilli, Xiao, Yuan, 1112,1061;

hadron production in pA collision Chirilli, Xiao, Yuan, 1112.1061; Stasto, Xiao, Zaslavsky, 1307.4057; Liu, YQM, Chao, 1909.02370; Liu, Kang, Liu, 2004.11990

Soft gluon factorization (SGF)

➤ SGF for quarkonium *H* production:

YQM, Chao, 1703.08402

$$(2\pi)^3 2P_H^0 \frac{d\sigma_H}{d^3 P_H} \approx \sum_n \int \frac{d^4 P}{(2\pi)^4} \mathcal{H}_n(P) F_{n\to H}(P, P_H)$$

- $\bullet \quad n = {}^{2S+1} L_J^{[c]}$
- \mathcal{H}_n : perturbatively calculable hard parts

- P: momentum of Qar Q
- $F_{n\to H}$: nonperturabtive soft gluon distributions (SGDs)
- UV renormalization scale is suppressed
- \succ Keep momentum difference between $Q\overline{Q}$ and H
 - Expect no further large relativistic corrections
- > Set $P \approx P_H$ in hard part: "reproduce" NRQCD

$$(2\pi)^3 2P_H^0 \frac{d\sigma_H}{d^3 P_H} \approx \sum_n \mathcal{H}_n(P_H) \langle \widetilde{\mathcal{O}}_n^H \rangle \qquad \langle \widetilde{\mathcal{O}}_n^H \rangle = \int \frac{d^4 P}{(2\pi)^4} F_{n \to H}(P, P_H)$$

From NRQCD EFT to SGF

Equation of motion used in NRQCD Chen, YQM, 2005.08786

If ignoring gluon field, replace D by ∇

$$\left(iD_0 - \frac{D^2}{2m} + \cdots\right)\psi = 0$$

- In NRQCD, use EOM to remove ∇_0 . Then for heavy quark pair, $\vec{\nabla}$ decomposed to relative derivative and total derivative
- Beginning from $\chi^\dagger \psi$, one can construct $\chi^\dagger \overleftrightarrow{\nabla}^2 \psi$ and $\nabla^2 (\chi^\dagger \psi)$

> The strategy in SGF

EOM can be used to remove relative derivatives, leaving only total derivatives (again two degrees of freedom)

$$\langle \mathcal{Q} + X | \nabla_0^{n_1} \nabla^{2n_2} (\psi^{\dagger} \chi) | 0 \rangle$$

- Integration by parts remove operators except $n_1 = n_2 = 0$
- Matching coefficients are functions of P_X^2 , $P_X \cdot P$, P^2
- SGF obtained, kinematic effects in NRQCD resummed
- SGF is a generalization of NRQCD factorization

Summary for pp

- > Theories based on QCD
 - NRQCD factorization: rigorous but bad convergence
 - SGF: rigorous, a subset of v^2 correction resummed, good convergence expected
 - Open question: prove factorization to all orders!
- Large logs rigorously resummed

An era to fully understand production mechanism!

- E.g., J/ψ production in jets: problem likely solvable in SGF See Q. Yang talk (Tue: D2)
- Stay tuned!

Difference between pp and pA

- Different for initial state parton distribution (modify CO factorization)
- Modification of PDF in nuclei: still CO fac., with nPDF
- Gluon saturation (similar physics may appear in pp): use CGC fac.,
 multiparton interaction resummed, small-x log resummed
- Parton propagation in medium: energy loss, convolution factor
- Different for final state interaction (modify quarkonium factorization)
- Break up in the nuclear matter: nuclear absorption
- Break up by commoving particles: comover interaction (not completely different, comovers also exist in pp, can be more important in pA)

Initial state: leading twist or higher twist?

Depends on gluon density

- Nucleus has $A^{1/3}$ times more gluons
- More gluons at small-x (especially forward production region): gluon splitting from DGLAP evolution
- Saturated gluons has occupation numbers $O(1/\alpha_s)$, with typical momenta at the order of saturation scale $k_T \sim Q_s$: higher twist no α_s suppression

Depends on scales

- Higher twist suppressed by Q_s^2/Q^2
- Q^2 is hard scale, should chosen as $m_T^2=m^2+p_T^2$: higher twist contribution is less important for bottomium and high p_T

\triangleright Charmonium at low p_T may need higher twist

- nPDF: leading twist
- CGC and energy loss: higher twist

Ground state production in pA

$> I/\psi$ production in pA: evidence of higher

- All models provide reasonable description within uncertainty
- nPDFs: too large uncertainty, hard to conform or rule out
- CGC gives best description (within the scope of application)
- Open question: how to extend the scope of application of CGC?

Final state: nuclear absorption

> Time scales

$$t_t \sim 2R_A \frac{m_n}{E_n},$$
 $t_c \sim \frac{1}{2m} \frac{E}{m} > \frac{1}{2m},$
 $t_f \sim \frac{1}{mv^2} \frac{E}{m} \sim \frac{t_c}{v^2},$

- t_t time for traverse the nucleus, ~ 0.05 fm for PHENIX, ~ 0.002 fm for ALICE
- t_c time for $Q\bar{Q}$ production, > 0.07 fm for charm
- t_f time for quarkonium formation $\Rightarrow t_f \gg t_t$

Quarkonium formed outside of nucleus, nuclear absorption is negligible

Final state: comovers

> Relative suppression of excited states

- Similar initial state information, only final state interaction matters
- Excited states are loosely bounded, easier affected by comovers;
 evidence of comovers effect?
- Other explanations
 Kisslinger, 1412.4747;
 Du, Rapp, 1504.00670;
 Chen, Guo, Liu, Zhuang, 1607.07927

Hadron comover model

> Evolution of quarkonium density

Ferreiro, Lansberg, 1804.04474

$$\tau \frac{\mathrm{d}\rho^{\Upsilon}}{\mathrm{d}\tau} (b, s, y) = -\sigma^{\mathrm{co-\Upsilon}} \rho^{\mathrm{co}}(b, s, y) \rho^{\Upsilon}(b, s, y)$$

Dissociation Xsec Comover density Quarkonium density one for each onium

• Bose-Einstein distribution of comover: effective temperature $T_{\rm eff} \approx 200 {\rm MeV}$

$$\mathcal{P}(E^{\rm co}; T_{\rm eff}) \propto 1/(e^{E^{\rm co}/T_{\rm eff}}-1)$$

	CIM	Exp
	-1.93 < y < 1.93	CMS data
$\Upsilon(2S)/\Upsilon(1S)$	0.91 ± 0.03	$0.83 \pm 0.05 \text{ (stat.)} \pm 0.05 \text{ (syst.)}$
$\Upsilon(3S)/\Upsilon(1S)$	0.72 ± 0.02	0.71 ± 0.08 (stat.) ± 0.09 (syst.)
	-2.0 < y < 1.5	ATLAS data
$\Upsilon(2S)/\Upsilon(1S)$	0.90 ± 0.03	$0.76 \pm 0.07 \text{ (stat.)} \pm 0.05 \text{ (syst.)}$
$\Upsilon(3S)/\Upsilon(1S)$	0.71 ± 0.02	0.64 ± 0.14 (stat.) ± 0.06 (syst.)

Parton comover model

> Interaction with comover is dynamic

- Not only disassociate quarkonium, but also make it hard to form
- Factorization broken: hadronization functions (LDMEs in NRQCD, or SGDs in SGF) are not universal, depending on processes
- Open question: a factorization method to deal with comover?
- > A dynamic model: ICEM with a cutoff

$$\frac{d\sigma_{\psi}}{d^2P_{\perp}dy} = F_{\psi} \int_{m_{\psi}}^{2m_{D}-\Lambda} dM \left(\frac{M}{m_{\psi}}\right)^2 \frac{d\sigma_{c\bar{c}}}{dMd^2P_{\perp}'dy} \left| \begin{array}{c} \text{YQM, Venugopalan, Watanabe, Zhang,1707.07266} \\ P_{\perp}' = \frac{M}{m_{\psi}} P_{\perp} \end{array} \right|_{P_{\perp}' = \frac{M}{m_{\psi}}} P_{\perp}$$

Λ: average momentum exchanged from parton comovers

Quarkonium with high multiplicity

The interplay between coherent (initial state) and incoherent (final state) rescattering effects may account for the J/ψ 's suppression in p+A collisions at forward rapidity.

Quarkonium in AA

> Transport coefficients from in medium

quarkonium dynamics

See M. Escobedo talk (Mon: B2)

- The transport parameter κ provides a link between heavy quark diffusion and quarkonium suppression.
- We have determined κ and γ non-perturbatively using lattice QCD data.
- More on Effective Field Theories and lattice QCD on Nora Brambilla's plenary talk on Thursday.

➤ Coupled Transport Equations for Quarkonium Production in Heavy Ion Collisions See X. Yao talk (Mon: B2)

- Recent theoretical developments using open quantum system: wavefunction decoherence —> dissociation, recombination occurs at the same time
- Construct coupled transport equations of open heavy flavors and quarkonium, can handle correlated and uncorrelated recombination

Summary

- pp: Soft gluon factorization may provide a new hope to fully understand production mechanism
- > pA: models for initial state effects have not been distinguished
- > pA: a rigorous factorization method for comover is still missing
- ➤ Multiplicity in pp, pA, AA; quarkonium dissociation, suppression, recombination in AA under study

Thank you!