Summary: Jets and High-\(p_T\)

Jana Bielcikova
(Nuclear Physics Institute of the CAS)
Models for medium response in a nutshell

Recoil
JEWEL
LBT
MARTINI
MATTER
JETSCAPE Framework
[MATTER + LBT/MARTINI]

Recoil + Hydro Res.
CoLBT-hydro
JETSCAPE Framework
[MATTER + LBT/MARTINI + CausalDiff + MUSIC]

Hydro Response
Coupled Jet-Fluid
EPOS3-HQ

Weakly-coupled ($> E_{med}$) ~ E_{med} Strongly-coupled ($\leq E_{med}$)

Slide courtesy Y. Tachibana, Plenary Wed 9:00
The R_{AA} ...
Hadron R_{AA} at RHIC: U+U collisions

• $R_{AA}(p_T, N_{\text{part}})$ dependence qualitatively consistent between U+U and Au+Au
• Rich spectrum of meson species measured
• K^*, ϕ less suppressed than π^0, η at lower p_T

Universal high p_T suppression with N_{part} for light and strange quark mesons → Jet fragmentation not modified (or modified equally).
Jet R_{AA} measurements at LHC: going to large R

ALICE:
- low p_T jets, moderate R

ATLAS, CMS:
- high p_T jets, larger R

CMS measured jet R_{AA} in Pb+Pb at 5.02 TeV for large $R > 0.6$ in large background. Only modest increase, R_{AA} never reaches 1.

ALICE, PRC 101, 034911 (2020)
ATLAS, PLB 790 (2019) 108
Jet R_{AA} calculations: there are many... not all listed here...

What new have we seen at HP2020?
Predictions for large R jets and di-jets

- Competition of effects results in a very mild evolution of R_{AA} from small to large R
- QGP trough effect more pronounced at RHIC
- Jet suppression due to QGP trough is from the wake of the recoiling jet → new observable

LHC

- non-eq. + QPG ridge
- non-eq. + QPG trough

RHIC

- Hybrid strong/weak coupling

![Graphs showing predictions for LHC and RHIC](image-url)
Analytical calculation in collinear factorization (LO+LL with nPDF) with medium effects on resummation

Recovery of energy at large angles is non-perturbative and strongly affected by choice of phase space for quenching

q_{hat}: measure of energy lost + resolution parameter of the medium
Machine learning: lower jet p_T and larger R?

charged jets

| ALICE Pb-Pb 5.02 TeV, 0-10% Charged jets, anti-k_T, $|\eta| < 0.9 - R$ |
| ML estimator trained on PYTHIA |
| $R = 0.4$ |
| $R = 0.6$ |

full jets

ML estimator trained on PYTHIA

Aim of ML: Improved precision and extended reach in p_T and R should help to constrain model predictions and allow for comparison with RHIC.

ML method: Haake, Loizides, PRC 99, 064904 (2019)

Caution: Although jet-by-jet fluctuations are significantly narrowed, ML training affected by assumed fragmentation model (~10-40%). Need to include quenched MCs …

Models:
- JEWEL: JHEP 1707 (2017) 141
- SCET$_G$: PRD 80 (2009) 054022
- Hybrid Model: PRL 124 (2020) 052301
- LBT: PRC 99 (2019) 054911
Jet yield suppression consistent with inclusive hadron suppression in Au+Au and Cu+Au collisions at RHIC, behavior similar to the LHC.
The correlations … \(\pi^0/\gamma \)-hadron, \(h/\gamma \)+jet
New observable: $I_{AA}(\Delta \phi)$
look for modification of associated particle yields on away-side of pion trigger ("jet substructure level")

p_T and angular dependent modification of away-side hadron yields measured

- high p_T^{assoc}: overall suppression
- mid p_T^{assoc}: suppression at jet core and enhancement at jet skirt
- low p_T^{assoc}: enhancement primarily at jet skirt

Increasing associated p_T
γ+jet and π^0+jet studies at RHIC

- γ does not interact strongly → a calibrated probe
- γ+jet data consistent with π^0+jet

Radius dependent I_{AA} suppression observed:
→ p_T behavior differs from models.
Jet radial profile: no significant in-medium broadening

PYTHIA 6 and PYTHIA 8 give different pictures
→ pp data needed (analysis ongoing)

Models:
Jet-fluid: Chang, Qin, *PRC* 94 (2016) 024902
Vitev et. al: Sievert, Vitev, Yoon, *PLB* 795 (2019) 502
Jet acoplanarity in Pb+Pb collisions

First measurement of fully corrected acoplanarity down to low p_T recoil jets.

Recoil jet yield suppressed with respect to PYTHIA + indication of $\Delta \phi$ narrowing.

$\Delta \phi \sim \pi$: vacuum: broadening (Sudakov radiation) medium: interplay of multiple soft scattering (↑) and radiative corrections (↓)

$\Delta \phi \ll \pi$: large-angle deflection of hard partons off quasiparticles

Chen et al, PLB 773 (2017) 672
Gyulassy et al., arxiv:1808.03238
Zakharov, arxiv:2003.10182

D’Eramo, Rajagopal, Yin, JHEP 01 (2019) 172
Jet acoplanarity in small systems: jet quenching?

How to explore it?
Traditional R_{AA}: no, Glauber scaling undefined! → study acoplanarity instead

- High vs. low event activity spectra in p+Au suppressed, but acoplanarity minimally modified.
- Qualitatively reproduced by PYTHIA

High-multiplicity trigger suppresses events with one hard recoil jet and enhances multi-jet events …
Out-of-cone energy loss: RHIC vs LHC

PHENIX, PRC 87, 034911 (2013)

Inclusive π^0
$\Delta p_T = 2-3$ GeV/c

RHIC: various channels consistent (π^0, jet, trigger+jet)

In-medium energy loss smaller at RHIC than at the LHC.
Path-length dependence of energy loss:

- Positive jet $v_2(p_T) \sim 2-3\%$
- Increased asymmetry of dijet pairs vs pp collisions persists even at leading jet $p_T \sim 0.5\text{ TeV}$

Observables studied:
- Jet v_2
- Dijet momentum imbalance $x_J = p_{T1}/p_{T2}$

Jet v_2: tension with ALICE; higher precision data needed
Let us look closer at jets

jet shapes
jet fragmentation
jet substructure
jet charge …
Jet shapes at RHIC

Radial distribution of momentum of jet constituents

Low-p_T (< 2 GeV) particles pushed toward larger radii in the out-of-plane direction relative to the in-plane direction.

Larger yields of low-p_T particles observed in the out-of-plane direction → inline with in-medium path length dependence.
Almost no modification of the jet core in Pb+Pb relative to p+p, enhancement of particles at larger radii.

Coupled jet-fluid model captures features observed in data.

Jet shape ratio Pb+Pb/pp:
- Inclusive jets: non-monotonic function of radius
- \(\gamma\)-jets ratio increases monotonically with radius

Chang, Tachibana, Qin, PLB 801 (2020) 135181
Jet fragmentation …
Semi-inclusive jet fragmentation function at RHIC

First fully corrected results of semi-inclusive jet fragmentation functions at RHIC. Data agree well with PYTHIA8.

Possible tangential bias on jet selection by requiring high-p_T trigger particle? → pp data measurement and analysis in more central events ongoing.
Jet fragmentation and substructure … the ATLAS way

A. Sickles, Wed 10:30
W. Zou, poster

ATLAS - CONF-2019-056

Significant modification of structure of jet fragments:
• qualitative change happens at $p_T \sim 4$ GeV
• most of the “extra” particles within the jet cone

Direct probe of the ability of medium to resolve parton fragments.
Jets with 1 subjet less quenched than multiple subjets.

$D(p_T, r) = \frac{1}{N_{\text{jet}}} \frac{1}{2\pi r dr} \frac{dN_{\text{ch}}(p_T, r)}{dp_T}$

$\Delta D(p_T, r) = D(p_T, r)_{\text{Pb+Pb}} - D(p_T, r)_{pp}$

$R_{D(p_T, r)} = \frac{D(p_T, r)_{\text{Pb+Pb}}}{D(p_T, r)_{pp}}$
Hybrid model: back reaction needed, but not sufficient. SCET$_G$ and CoLBT-hydro qualitatively describe the trend.

Excess of low p_T particles, depletion at high p_T in central collisions observed at the LHC. Similar trends observed at RHIC in γ-hadron correlations as well.
γ-tagged jet fragmentation function

Comparison with CMS

Comparison with ATLAS

Measured centrality dependent enhancement of soft hadrons (large ξ) mainly due to medium response.

The lost energy is redistributed into soft hadrons by multiple scattering, gluon radiation and medium excitation from jet.

Note: In T. Luo’s talk are shown further jet substructure observables confirming importance of medium response to describe data at the LHC.
Z-tagged fragmentation

- **SCET** with $g=2.0$ reasonable description of data
- Hybrid model with medium wake undershoots intermediate $p_T = 3-5$ GeV, discrepancy even more pronounced in $\Delta \phi$ distributions

Similarly as for γ-tagged correlations excess (depletion) of low (high) momentum particles measured

Need to improve medium response

K. Tatar, Thu 11:55
J. Ouellette, Thu 13:30

SCET G PRD 93 (2016) 074030,
PRD 101 (2020) 076020
Hybrid JHEP 1410 (2014) 019
Wake of jets in linearized hydrodynamics

Linearized hydro provides improved description of medium back-reaction

→ harder p_T spectrum of back-reaction particles
→ beaming of spectrum along jet azimuthal direction
→ wider rapidity distribution
→ larger fraction of semi-hard particles recovered around the jet
→ slower recovery of jet energy with R
Medium modification of jet and subjet fragmentation

pQCD based on factorized picture: vacuum-like and medium-induced emissions (BDMPS-Z)

medium: fixed brick of size L
Jet R_{AA} data described reasonably well.

Modification of jet fragmentation function, qualitatively agrees with the LHC data, but it is not IRC safe observable.

New observable:
Study modification of subjet FF which is IRC safe

$D_{\text{sub}}(z) = 1/N_{\text{jets}} \frac{dN_{\text{sub}}}{dz}$
Let us groom the jets …

removing soft, wide-angle radiation from jets
SoftDrop grooming in Pb+Pb collisions

z_g : sensitive to modification of QCD splitting function, (in)coherent E_{loss}

θ_g : medium-induced gluon radiation broadens jets, but E_{loss} narrows them, q-g fractions, path-length effects …

First fully corrected measurement of θ_g and z_g in A+A collisions:
- no significant modification of z_g distribution
- modification of $\theta_g \rightarrow$ hint of collimation

Alternative groomers? Which limitations they have?
Jet grooming at RHIC

What is origin of the R_{d+Au} enhancement? Jet quenching in $d+Au$? Explore jet mass ...

First inclusive p+p and p+Au (groomed) jet mass measurements at RHIC:
- No CNM effects on (groomed) jet mass ...

Other groomed observables explored:
z_g and R_g p+p 200 GeV \(\text{STAR: arXiv: 2003.02114} \)
Au+Au 200 GeV \(\text{poster D. Nemes} \)
Jet substructure: dynamical grooming

SoftDrop has flexibility to select splittings from different kinematic regions, but how to choose the parameters?

More aggressive grooming with decreasing a

- Removal of soft radiation sensitive to total color charge
- Auto-generated grooming condition on a jet-by-jet basis
- k_TDrop is remarkably robust to hadronization.

$\theta_2 > \theta_1 > \theta_0$

Physical interpretation:
- $a=2$: TimeDrop
- $a=1$: k_TDrop
- $a=0$: zDrop

Mehtar-Tani, Soto-Ontoso, Tywoniuk:
PRD 101 (2020) 034004

Jet substructure in p+p from ALICE

First measurement of jet angularities and dynamically groomed distributions θ_g, z_g

PyTHIA provides reasonable description of measured distributions.

Test pQCD by systematic measurements for multiple R, β.
Jet charge …
Different flavor jet charges remain distinct in HI collisions.

\[Q_{\kappa, \text{jet}} = \frac{1}{(p_T^{\text{jet}})^{\kappa}} \sum_{h \text{ in jet}} Q_h (p_T^h)^{\kappa} \]

- \(Q_{\kappa, \text{jet}} \) is the jet charge with the parameter \(\kappa \).
- \(p_T^{\text{jet}} \) is the transverse momentum of the jet.
- \(Q_h (p_T^h)^{\kappa} \) is the charge of the \(h \) flavor parton with transverse momentum \(p_T^h \).

R. Field et al. (1978)

- in-medium modification jet flavor dependent
- separation important to advance understanding of medium effects

large \(p_T \): isospin effects dominate
\(p_T < 200 \text{ GeV} \): effects of in-medium parton showers

Proposed measurement:
charge of individual jet flavors
First jet charge measurements in HI collisions:
- no significant modification observed in the jet charge width (contrary to PYQUEN)
- quark and gluon-like fractions from template fitting centrality independent and in agreement with pp data

BUT: current analysis relies on PYTHIA template fitting

Going beyond templates → toward data driven measurement of q and g jet modification

pp: Metodiev, Thaler, PRL 120 (2018) 24, 241602
Komiske, Metodiev, Thaler, JHEP 11 (2018) 059
Heavy-flavor jet substructure in p+p at the LHC

V. Kucera: Wed 13:05
X. Wang: Wed 13:45

c-jets:
D⁰-tagged jets grooming via iterative declustering

n_{SD}: number of hard splittings in jet fragmentation

Less hard splittings for D⁰-tagged jets than for inclusive
→ harder c-quark fragmentation

First direct measurement of the dead cone!
→ Suppression of radiation toward small angles

b-jet shape measurements:
data provide excellent opportunity to improve modeling of b-jet production and fragmentation

CMS, arXiv: 2005.14219

More on heavy-flavor in Roberta Arnaldi’s talk
Jet quenching in the hadron gas

For reshuffling jet shapes the full hadron gas can be approximated with a pion gas and constant $\sigma = 100\text{ mb}$.

Reasonable to neglect E_{loss} in the hadronic stage for single-particle or even jet R_{AA}, but for substructure observables and disentangling medium effects, the hadronic phase might be important (up to particle $p_T = 8-10\text{ GeV}$)!

Dorau, Rose, Pablos, Elfner, PRC 101 (2020) 3, 035208
• Modular framework, allows for study of different physics concepts in a consistent environment.
• Applicable to full range of HI phenomenology.
• Bayesian analysis enables systematic model-to-data comparison

Hydrodynamics
- Event-by-event VISHNew Hydro (2+1D)
- TRENTO (2+1D) initial conditions with free streaming

Jet evolution
- MATTER + LBT
- Switching virtuality between MATTER and LBT shower, $Q_0 = 1, 2, 3$ GeV
- $\hat{q} \propto \alpha_s^2 T^3 \ln \left(\frac{cE}{\alpha_s T} \right)$ based on HTL where $\alpha_s = 0.25$

Medium response
- Recoils: Kinetic theory based approach
- Medium constituents kicked out by jet propagate in jet shower
- Energy/momentum from medium subtracted from jet signals

slide courtesy C. Park

Double ratio of jet R_{AA} relative to $R=0.2$ close to unity well reproduced, as well as jet structure, v_2 ...
Instead of summarizing the summary …

Summary and Outlook

Partonic energy loss in nuclear collisions at RHIC is firmly established

• broadly consistent with pQCD-based energy loss models
• present measurements supply significant lower bound to initial color charge density

But it promises much more: detailed study of interplay between fragmentation and thermalization may supply new and unique probes of the dynamics

• This is hard, we are only at the beginning
• Intermediate $p_T \sim 5$-10 GeV/c appears to provide a laboratory in which we can isolate the various physics
Instead of summarizing the summary …

Summary and Outlook

Partonic energy loss in nuclear collisions at RHIC is firmly established

- broadly consistent with pQCD-based energy loss models
- present measurements supply significant lower bound to initial color charge density

But it promises much more: detailed study of interplay between fragmentation and thermalization may supply new and unique probes of the dynamics

- This is hard, we are only at the beginning
 - Intermediate $p_T \sim 5-10$ GeV/c appears to provide a laboratory in which we can isolate the various physics

Yes, still true. But we made a great progress!

We have a large reach in p_T now, but the “intermediate” p_T will probably teach us most …

1st Hard Probes conference (2004) "Status and perspectives of jets and high-p_T physics" (given by P. Jacobs)

Thank you for your attention