Summary: Jets and High-p_T

Jana Bielcikova (Nuclear Physics Institute of the CAS)

10th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

Models for medium response in a nutshell

The R_{AA} ...

Hadron R_{AA} at RHIC: U+U collisions

central

semi-central

- · Rich spectrum of meson species measured
- K*, ϕ less suppressed than π^0 , η at lower p_T

Universal high p_T suppression with N_{part} for light and strange quark mesons \rightarrow Jet fragmentation not modified (or modified equally).

Jet R_{AA} measurements at LHC: going to large R

CMS, C. McGinn, Mon 12:20 ATLAS, W. Zou, poster

ALICE:

low p_T jets, moderate R

Χ

ATLAS, CMS: high p_T jets, larger R

CMS measured jet R_{AA} in Pb+Pb at 5.02 TeV for large R > 0.6 in large background. Only modest increase, R_{AA} never reaches 1.

ALICE, PRC 101, 034911 (2020) ATLAS, PLB 790 (2019) 108

Jet R_{AA} calculations: there are many ...

Predictions for large R jets and di-jets

D. Pablos, Wed: 12:45

strong/weak

coupling

Competition of effects results in a very mild evolution of R_{AA} from small to large R
 QGP trough effect more pronounced at RHIC

• Jet suppression due to QGP trough is from the wake of the recoiling jet → new observable

Pablos, PRL 124 (2020) 5, 052301

Analytical calculation of jet R_{AA}

fewer color sources - less energy lost easier for energy to flow out-of-cone

more color sources - more energy lost recovery of lost energy

Analytical calculation in collinear factorization (LO+LL with nPDF) with medium effects on resummation

Recovery of energy at large angles is nonperturbative and strongly affected by choice of phase space for quenching

qhat: measure of energy lost + resolution parameter of the medium

K. Tywoniuk, Wed 12:20

Tywoniuk, Mehtar-Tani, Pablos

Machine learning: lower jet p_⊤ and larger R?

H. Bossi, Tue 12:20

Aim of ML: Improved precision and extended reach in p_T and R should help to constrain model predictions and allow for comparison with RHIC.

Caution: Although jet-by-jet fluctuations are significantly narrowed, ML training affected by assumed fragmentation model (~10-40%). Need to include quenched MCs ...

Models: JEWEL: JHEP 1707 (2017) 141 SCET_G: PRD 80 (2009) 054022

Hybrid Model: PRL 124 (2020) 052301

LBT: PRC 99 (2019) 054911

Fractional Collinear

BDMPS-Motivated

Fractional Large Angle

Inclusive jet suppression at RHIC

at RHIC, behavior similar to the LHC.

R. Licenik: Mo 11:20 M. Patel: Tue 11:40

The correlations ... π^0/γ -hadron, h/γ +jet

π^0 - hadron correlations in Au+Au at RHIC

Trigger p₋ 5-7 GeV/c

 π^0 -hadron, $\left[\pi + \frac{\pi}{2}, \pi + \frac{\pi}{2}\right]$

200 GeV, 0-20% • Au+Au (2010 & 2011)

• d+Au (2008)

PH*ENIX

preliminary

New observable: $I_{AA}(\Delta\phi)$ look for modification of associated particle yields on away-side of pion trigger ("jet substructure level")

p_T and angular dependent modification of away-side hadron yields measured

high p_{T}^{assoc} overall suppression mid p_{T}^{assoc} : suppression at jet core and enhacement at jet skirt

C.-P. Wong: Mo 13:55 M. Connors: poster 297 A. Hodges: poster 276

γ does not interact strongly→ a calibrated probe

 γ +jet data consistent with π^0 +jet

Radius dependent I_{AA} suppression observed:

 $\rightarrow p_{T}$ behavior differs from models.

Jet radial profile: no significant in-medium broadening

PYTHIA 6 and PYTHIA 8 give different pictures

→ pp data needed (analysis ongoing)

Models:

Jet-fluid: Chang, Qin, PRC 94 (2016) 024902

LBT: Chen, Cao, Luo, Pang, Wang, *PLB* 777 (2018) 707

Vitev et. al: Sievert, Vitev, Yoon, *PLB* 795 (2019) 502

Jet acoplanarity in Pb+Pb collisions

$\Delta \phi \sim \pi$:

vacuum: broadening (Sudakov radiation) medium: interplay of multiple soft scattering(↑) and radiative corrections (↓)

Chen et al, PLB 773 (2017) 672 Gyulassy et al., arxiv:1808.03238 Zakharov, arxiv:2003.10182

D'Eramo, Rajagopal, Yin, JHEP 01 (2019) 172

- First measurement of fully corrected acoplanarity down to low p_T recoil jets.
- Recoil jet yield suppressed with respect to PYTHIA + indication of Δφ narrowing.

Jet acoplanarity in small systems: jet quenching?

F. Krizek: Thu 10:35 D. Stewart: Tue 12:55

How to explore it?

Traditional R_{AA}: no, Glauber scaling undefined!

→ study acoplanarity instead

Is this jet quenching?

High-multiplicity trigger suppresses events with one hard recoil jet and enhances multi-jet events ...

- High vs. low event activity spectra in p+Au suppressed, but acoplanarity minimally modified.
- Qualitatively reproduced by PYTHIA

Out-of-cone energy loss: RHIC vs LHC

N. Sahoo, Tue 11:20

RHIC: various channels consistent (π^0 , jet, trigger+jet)

In-medium energy loss smaller at RHIC than at the LHC.

Path-length dependence of energy loss:

V. Bailey: Mo 11:00 T. Rinn (poster)

Observables studied:

- jet *v*₂
- dijet momentum imbalance $x_J = p_{T1}/p_{T2}$

Central Pb+Pb collisions @ 5.02 TeV

- positive jet v₂(p_T) ~ 2-3 %
- increased asymmetry of dijet pairs vs pp collisions persists even at leading jet p_τ ~ 0.5 TeV

CMS charged particles: PLB 776 (2018) 195);

ATLAS 2.76 TeV: *PRL 111 (2013) 152301*; ALICE 2.76 TeV: *PLB 753 (2016) 511*

Let us look closer at jets

jet shapes jet fragmentation jet substructure jet charge ...

Figure courtesy: K. Tywoniuk

Jet shapes at RHIC

Radial distribution of momentum of jet constituents

Low- p_T (< 2 GeV) particles pushed toward larger radii in the out-of-plane direction relative to the in-plane

Larger yields of low- p_T particles observed in the out-of-plane direction

→ inline with in-medium path length dependence

in-plane

Reaction

J. Mazer Thu 13:50

Almost no modification of the jet core in Pb+Pb relative to p+p, enhancement of particles at larger radii.

Coupled jet-fluid model captures features observed in data.

Jet shape ratio Pb+Pb/pp:

- Inclusive jets: non-monotonic function of radius
- γ-jets ratio increases monotonically with radius

Jet fragmentation

Semi-inclusive jet fragmentation function at RHIC

S. Oh, poster

 $p_{\mathrm{T.iet}}$

First fully corrected results of semi-inclusive jet fragmentation functions at RHIC Data agree well with PYTHIA8

Possible tangential bias on jet selection by requiring high- p_T trigger particle?

→ pp data measurement and analysis in more central events ongoing

Jet fragmentation and substructure ... the ATLAS way

A. Sickles, Wed 10:30 W. Zou, poster

a 2D map of jet fragmentation

Significant modification of structure of jet fragments:

- qualitative change happens at $p_T \sim 4 \text{ GeV}$
- most of the "extra" particles within the jet cone

Direct probe of the ability of medium to resolve parton fragments.

Jets with 1 subjet less quenched than multiple subjets.

 $\Delta~D~(p_{_{\mathrm{T}}},~r)~[\mathrm{GeV}^{_{\mathrm{T}}}$

γ -tagged jet fragmentation function

Excess of low p_T particles, depletion at high p_T in central collisions observed at the LHC. Similar trends observed at RHIC in γ -hadron correlations as well.

Hybrid model: back reaction needed, but not sufficient SCET_G and CoLBT-hydro qualitatively describe the trend

M. Taylor, Mon 13:35 C.-P. Wong, Mo 13:55

γ -tagged jet fragmentation function

W. Chen, S. Cao, T. Luo, L.-G. Pang, X.-N. Wang, 2005.09678

Measured centrality dependent enhancement of soft hadrons (large ξ) mainly due to medium response.

The lost energy is redistributed into soft hadrons by multiple scattering, gluon radiation and medium excitation from jet.

Note: In T. Luo's talk are shown further jet substructure observables confirming importance of medium response to describe data at the LHC.

Z-tagged fragmentation

CMS Preliminary

1.5 2 2.5

 $\Delta \phi_{\text{trk,Z}}$

PbPb - pp

Cent:30-50%

K. Tatar, Thu 11:55 J. Ouellette, Thu 13:30

SCET_G PRD 93 (2016) 074030, PRD 101 (2020) 076020 Hybrid JHEP 1410 (2014) 019

SCET_G with g=2.0 reasonable description of data

1.5

Cent:0-30%

Hybrid model with medium wake undershoots intermediate $p_T = 3-5$ GeV, discrepancy even more pronounced in Δφ distributions

 $p^{Z} > 30 \text{ GeV/c}$

····

> 1 GeV/c

w/o wake w/ wake positive only

Need to improve medium response

Linearized hydro provides improved description of medium back-reaction

- \rightarrow harder p_T spectrum of back-reaction particles
- → beaming of spectrum along jet azimuthal direction
- → wider rapidity distribution
- larger fraction of semi-hard particles recovered around the jet
- → slower recovery of jet energy with R

Medium modification of jet and subjet fragmentation

P. Caucal, Mo 11:40

pQCD based on factorized picture: vacuum-like and medium-induced emissions (BDMPS-Z)

medium: fixed brick of size L Jet R_{AA} data described reasonably well.

Modification of jet fragmentation function, qualitatively agrees with the LHC data, but it is not IRC safe observable.

New observable:

Study modification of subjet FF which is IRC safe

$$D_{sub}(z) = 1/N_{jets} dN_{sub}/dz$$

Let us groom the jets ...

removing soft, wide-angle radiation from jets

SoftDrop grooming in Pb+Pb collisions

 $\mathbf{z_g}$: sensitive to modification of QCD splitting function, (in)coherent \mathbf{E}_{loss}

 θ_g : medium-induced gluon radiation broadens jets, but E_{loss} narrows them, q-g fractions, path-length effects ...

First fully corrected measurement of θ_g and z_g in A+A collisions:

- no significant modification of z_g distribution
- modification of $\theta_a \rightarrow$ hint of collimation

Jet grooming at RHIC

What is origin of the R_{d+Au} enhancement? Jet quenching in d+Au? Explore jet mass ...

First inclusive p+p and p+Au (groomed) jet mass measurements at RHIC:

No CNM effects on (groomed) jet mass ...

Other groomed observables explored: z_g and R_g p+p 200 GeV STAR: arXiv: 2003.02114 Au+Au 200 GeV poster D. Nemes

Jet substructure: dynamical grooming

SoftDrop has flexibility to select splittings from different kinematic regions, but how to choose the parameters?

- · Removal of soft radiation sensitive to total color charge
- Auto-generated grooming condition on a jet-by-jet basis
- k_TDrop is remarkably robust to hadronization.

Mehtar-Tani, Soto-Ontoso, Tywoniuk: PRD 101 (2020) 034004

A. Soto-Ontoso, Wed 11:10

Thermal background: Mulligan, Ploskon, arXiv:2006.01812

Jet substructure in p+p from ALICE

First measurement of jet angularities and dynamically groomed distributions θ_g , z_g

$$\lambda_{\beta}^{\kappa} \equiv \sum_{i \in \text{jet}} \left(\frac{p_{T,i}}{p_{T,\text{jet}}}\right)^{\kappa} \left(\frac{\Delta R_{jet,i}}{R}\right)^{\beta}$$

PYTHIA provides reasonable description of measured distributions.

Test pQCD by systematic measurements for multiple R, β .

J. Mulligan, Wed 10:50 E. Lesser (poster)

Jet charge ...

Jet charge

$$Q_{\kappa, ext{ jet }} = rac{1}{\left(p_T^{ ext{jet }}
ight)^{\kappa}} \sum_{ ext{h in jet }} Q_h \left(p_T^h
ight)^{\kappa}$$

R. Field et al. (1978)

Different flavor jet charges remain distinct in HI collisions.

in-medium modification jet flavor dependent

 separation important to advance understanding of medium effects

large p_T : isospin effects dominate p_T < 200 GeV: effects of in-medium parton showers

Proposed measurement: charge of individual jet flavors

I. Vitev, Wed 12:25

Li, Vitev, PRD 101, 076020 (2020)

Jet p_ (GeV)

Jet charge measurement: q/g contributions in jets

D. A. Hangal Thu 13:10
J. Brewer, Wed 7:55

First jet charge measurements in HI collisions:

- no significant modification observed in the jet charge width (contrary to PYQUEN)
- quark and gluon-like fractions from template fitting centrality independent and in agreement with pp data

BUT: current analysis relies on PYTHIA template fitting

Going beyond templates → toward data driven measurement of q and g jet modification

pp: Metodiev, Thaler, *PRL* 120 (2018) 24, 241602 Komiske, Metodiev, Thaler, *JHEP* 11 (2018) 059

Brewer, Thaler, Turner, in preparation

CMS arXiv: 2004.00602

Heavy-flavor jet substructure in p+p at the LHC

V. Kucera: Wed 13:05 X. Wang: Wed 13:45

 D^0 -tagged jets grooming via iterative declustering $\mathbf{n_{SD}}$: number of hard splittings in jet fragmentation

Less hard splittings for D⁰-tagged jets than for inclusive → harder *c*-quark fragmentation

First direct measurement of the dead cone!

→ Suppression of radiation toward small angles

b-jet shape measurements:

data provide excellent opportunity to improve modeling of b-jet production and fragmentation

CMS, arXiv: 2005.14219

Jet quenching in the hadron gas

Late stage hadronic interactions explored within SMASH, high-p_T particles in a radially expanding hadron gas

QGP:

$$=rac{\langle q_{\perp}^2
angle_L}{L}, \qquad \hat{e}=rac{\langle q_{\parallel}^2
angle_L}{L}$$

hadron gas:

$$\tilde{q} = \frac{\langle q_{\perp}^2 \rangle}{\lambda_{mfp}}, \qquad \tilde{e} = \frac{\langle q_{\parallel}^2 \rangle}{\lambda_{mfp}}$$

For reshuffling jet shapes the full hadron gas can be approximated with a pion gas and constant $\sigma = 100$ mb.

Reasonable to neglect E_{loss} in the hadronic stage for single-particle or even jet R_{AA} , but for substructure observables and disentangling medium effects, the hadronic phase might be important (up to particle $p_T = 8-10 \text{ GeV}$)!

JETSCAPE

W. Fan, Mo 13:35

C. Sirimanna, Wed 11:30

C. Park, Wed 13:05

M. Kordell, Thu 10:55

- Modular framework, allows for study of different physics concepts in a consistent environment.
- Applicable to full range of HI phenomenology.
- Bayesian analysis enables systematic model-to-data comparison

JETSCAPE "PP19" tune provides reasonable agreement with experiments and PYTHIA at mid-rapidity |y|<2.

Hydrodynamics

- Event-by-event VISHNew Hydro (2+1D)
- TRENTO (2+1D) initial conditions with free streaming

Jet evolution

- MATTER + LBT
- Switching virtuality between MATTER and LBT shower, $Q_0 = 1, 2, 3 \text{ GeV}$
- $\hat{q} \propto \alpha_s^2 T^3 \ln \left(\frac{cE}{\alpha_s T} \right)$ based on HTL where $\alpha_s = 0.25$

Medium response

- Recoils: Kinetic theory based approach
- Medium constituents kicked out by jet propagate in jet shower
- Energy/momentum from medium subtracted from jet signals

slide courtesy C. Park

JETSCAPE

Double ratio of jet R_{AA} relative to R=0.2 close to unity well reproduced, as well as jet structure, v₂ ...

Jet fragmentation function

Jet v₂, v₃

Instead of summarizing the summary ...

1st Hard Probes conference (2004)
"Status and perspectives of jets and high-p_T physics" (given by P. Jacobs)

Summary and Outlook

Partonic energy loss in nuclear collisions at RHIC is firmly established

- broadly consistent with pQCD-based energy loss models
- present measurements supply significant lower bound to initial color charge density

But it promises much more: detailed study of interplay between fragmentation and thermalization may supply new and unique probes of the dynamics

- This is hard, we are only at the beginning
- Intermediate $p_T \sim 5-10$ GeV/c appears to provide a laboratory in which we can isolate the various physics

Instead of summarizing the summary ...

1st Hard Probes conference (2004) "Status and perspectives of jets and high-p_T physics" (given by P. Jacobs)

Summary and Outlo and the LHC

Partonic energy loss in nuclear collisions at RHIC is firmly established

models really advanced

- broadly consistent with pQCD-based energy loss models
- present measurements supply significant lower bound to initial color charge density

rich spectrum of observables

Yes, still true. But we made a great progress!

But it promises much more: detailed study of interplay between fragmentation and thermalization may supply new and unique probes of the dynamics

- This is hard, we are only at the beginning
- Intermediate $p_T \sim 5-10$ GeV/c appears to provide a laboratory in which we can isolate the various physics

We have a large reach in p_T now, but the "intermediate" p_T will probably teach us most ...

Probes '04 Jets and High pT 43