Summary: Jets and High-p_T # Jana Bielcikova (Nuclear Physics Institute of the CAS) 10th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions #### Models for medium response in a nutshell # The R_{AA} ... # Hadron R_{AA} at RHIC: U+U collisions central semi-central - · Rich spectrum of meson species measured - K*, ϕ less suppressed than π^0 , η at lower p_T Universal high p_T suppression with N_{part} for light and strange quark mesons \rightarrow Jet fragmentation not modified (or modified equally). # Jet R_{AA} measurements at LHC: going to large R CMS, C. McGinn, Mon 12:20 ATLAS, W. Zou, poster ALICE: low p_T jets, moderate R Χ ATLAS, CMS: high p_T jets, larger R CMS measured jet R_{AA} in Pb+Pb at 5.02 TeV for large R > 0.6 in large background. Only modest increase, R_{AA} never reaches 1. ALICE, PRC 101, 034911 (2020) ATLAS, PLB 790 (2019) 108 #### Jet R_{AA} calculations: there are many ... ## Predictions for large R jets and di-jets #### D. Pablos, Wed: 12:45 strong/weak coupling Competition of effects results in a very mild evolution of R_{AA} from small to large R QGP trough effect more pronounced at RHIC • Jet suppression due to QGP trough is from the wake of the recoiling jet → new observable Pablos, PRL 124 (2020) 5, 052301 # Analytical calculation of jet R_{AA} fewer color sources - less energy lost easier for energy to flow out-of-cone more color sources - more energy lost recovery of lost energy Analytical calculation in collinear factorization (LO+LL with nPDF) with medium effects on resummation Recovery of energy at large angles is nonperturbative and strongly affected by choice of phase space for quenching qhat: measure of energy lost + resolution parameter of the medium #### K. Tywoniuk, Wed 12:20 Tywoniuk, Mehtar-Tani, Pablos #### Machine learning: lower jet p_⊤ and larger R? H. Bossi, Tue 12:20 Aim of ML: Improved precision and extended reach in p_T and R should help to constrain model predictions and allow for comparison with RHIC. Caution: Although jet-by-jet fluctuations are significantly narrowed, ML training affected by assumed fragmentation model (~10-40%). Need to include quenched MCs ... Models: JEWEL: JHEP 1707 (2017) 141 SCET_G: PRD 80 (2009) 054022 Hybrid Model: PRL 124 (2020) 052301 LBT: PRC 99 (2019) 054911 Fractional Collinear BDMPS-Motivated Fractional Large Angle #### Inclusive jet suppression at RHIC at RHIC, behavior similar to the LHC. R. Licenik: Mo 11:20 M. Patel: Tue 11:40 # The correlations ... π^0/γ -hadron, h/γ +jet #### π^0 - hadron correlations in Au+Au at RHIC Trigger p₋ 5-7 GeV/c π^0 -hadron, $\left[\pi + \frac{\pi}{2}, \pi + \frac{\pi}{2}\right]$ 200 GeV, 0-20% • Au+Au (2010 & 2011) • d+Au (2008) PH*ENIX preliminary New observable: $I_{AA}(\Delta\phi)$ look for modification of associated particle yields on away-side of pion trigger ("jet substructure level") p_T and angular dependent modification of away-side hadron yields measured high p_{T}^{assoc} overall suppression mid p_{T}^{assoc} : suppression at jet core and enhacement at jet skirt C.-P. Wong: Mo 13:55 M. Connors: poster 297 A. Hodges: poster 276 γ does not interact strongly→ a calibrated probe γ +jet data consistent with π^0 +jet Radius dependent I_{AA} suppression observed: $\rightarrow p_{T}$ behavior differs from models. Jet radial profile: no significant in-medium broadening PYTHIA 6 and PYTHIA 8 give different pictures → pp data needed (analysis ongoing) Models: Jet-fluid: Chang, Qin, PRC 94 (2016) 024902 **LBT:** Chen, Cao, Luo, Pang, Wang, *PLB* 777 (2018) 707 Vitev et. al: Sievert, Vitev, Yoon, *PLB* 795 (2019) 502 #### Jet acoplanarity in Pb+Pb collisions #### $\Delta \phi \sim \pi$: vacuum: broadening (Sudakov radiation) medium: interplay of multiple soft scattering(↑) and radiative corrections (↓) Chen et al, PLB 773 (2017) 672 Gyulassy et al., arxiv:1808.03238 Zakharov, arxiv:2003.10182 D'Eramo, Rajagopal, Yin, JHEP 01 (2019) 172 - First measurement of fully corrected acoplanarity down to low p_T recoil jets. - Recoil jet yield suppressed with respect to PYTHIA + indication of Δφ narrowing. Jet acoplanarity in small systems: jet quenching? F. Krizek: Thu 10:35 D. Stewart: Tue 12:55 How to explore it? Traditional R_{AA}: no, Glauber scaling undefined! → study acoplanarity instead Is this jet quenching? High-multiplicity trigger suppresses events with one hard recoil jet and enhances multi-jet events ... - High vs. low event activity spectra in p+Au suppressed, but acoplanarity minimally modified. - Qualitatively reproduced by PYTHIA #### Out-of-cone energy loss: RHIC vs LHC N. Sahoo, Tue 11:20 RHIC: various channels consistent (π^0 , jet, trigger+jet) In-medium energy loss smaller at RHIC than at the LHC. # Path-length dependence of energy loss: V. Bailey: Mo 11:00 T. Rinn (poster) #### Observables studied: - jet *v*₂ - dijet momentum imbalance $x_J = p_{T1}/p_{T2}$ Central Pb+Pb collisions @ 5.02 TeV - positive jet v₂(p_T) ~ 2-3 % - increased asymmetry of dijet pairs vs pp collisions persists even at leading jet p_τ ~ 0.5 TeV CMS charged particles: PLB 776 (2018) 195); ATLAS 2.76 TeV: *PRL 111 (2013) 152301*; ALICE 2.76 TeV: *PLB 753 (2016) 511* #### Let us look closer at jets jet shapes jet fragmentation jet substructure jet charge ... Figure courtesy: K. Tywoniuk #### Jet shapes at RHIC Radial distribution of momentum of jet constituents Low- p_T (< 2 GeV) particles pushed toward larger radii in the out-of-plane direction relative to the in-plane Larger yields of low- p_T particles observed in the out-of-plane direction → inline with in-medium path length dependence in-plane Reaction J. Mazer Thu 13:50 Almost no modification of the jet core in Pb+Pb relative to p+p, enhancement of particles at larger radii. Coupled jet-fluid model captures features observed in data. Jet shape ratio Pb+Pb/pp: - Inclusive jets: non-monotonic function of radius - γ-jets ratio increases monotonically with radius # Jet fragmentation #### Semi-inclusive jet fragmentation function at RHIC S. Oh, poster $p_{\mathrm{T.iet}}$ First fully corrected results of semi-inclusive jet fragmentation functions at RHIC Data agree well with PYTHIA8 Possible tangential bias on jet selection by requiring high- p_T trigger particle? → pp data measurement and analysis in more central events ongoing Jet fragmentation and substructure ... the ATLAS way A. Sickles, Wed 10:30 W. Zou, poster #### a 2D map of jet fragmentation Significant modification of structure of jet fragments: - qualitative change happens at $p_T \sim 4 \text{ GeV}$ - most of the "extra" particles within the jet cone Direct probe of the ability of medium to resolve parton fragments. Jets with 1 subjet less quenched than multiple subjets. $\Delta~D~(p_{_{\mathrm{T}}},~r)~[\mathrm{GeV}^{_{\mathrm{T}}}$ ## γ -tagged jet fragmentation function Excess of low p_T particles, depletion at high p_T in central collisions observed at the LHC. Similar trends observed at RHIC in γ -hadron correlations as well. Hybrid model: back reaction needed, but not sufficient SCET_G and CoLBT-hydro qualitatively describe the trend #### M. Taylor, Mon 13:35 C.-P. Wong, Mo 13:55 #### γ -tagged jet fragmentation function W. Chen, S. Cao, T. Luo, L.-G. Pang, X.-N. Wang, 2005.09678 Measured centrality dependent enhancement of soft hadrons (large ξ) mainly due to medium response. The lost energy is redistributed into soft hadrons by multiple scattering, gluon radiation and medium excitation from jet. Note: In T. Luo's talk are shown further jet substructure observables confirming importance of medium response to describe data at the LHC. #### **Z-tagged fragmentation** CMS Preliminary 1.5 2 2.5 $\Delta \phi_{\text{trk,Z}}$ PbPb - pp Cent:30-50% K. Tatar, Thu 11:55 J. Ouellette, Thu 13:30 SCET_G PRD 93 (2016) 074030, PRD 101 (2020) 076020 Hybrid JHEP 1410 (2014) 019 SCET_G with g=2.0 reasonable description of data 1.5 Cent:0-30% Hybrid model with medium wake undershoots intermediate $p_T = 3-5$ GeV, discrepancy even more pronounced in Δφ distributions $p^{Z} > 30 \text{ GeV/c}$ ···· > 1 GeV/c w/o wake w/ wake positive only Need to improve medium response Linearized hydro provides improved description of medium back-reaction - \rightarrow harder p_T spectrum of back-reaction particles - → beaming of spectrum along jet azimuthal direction - → wider rapidity distribution - larger fraction of semi-hard particles recovered around the jet - → slower recovery of jet energy with R #### Medium modification of jet and subjet fragmentation P. Caucal, Mo 11:40 pQCD based on factorized picture: vacuum-like and medium-induced emissions (BDMPS-Z) medium: fixed brick of size L Jet R_{AA} data described reasonably well. Modification of jet fragmentation function, qualitatively agrees with the LHC data, but it is not IRC safe observable. #### New observable: Study modification of subjet FF which is IRC safe $$D_{sub}(z) = 1/N_{jets} dN_{sub}/dz$$ # Let us groom the jets ... removing soft, wide-angle radiation from jets #### SoftDrop grooming in Pb+Pb collisions $\mathbf{z_g}$: sensitive to modification of QCD splitting function, (in)coherent \mathbf{E}_{loss} θ_g : medium-induced gluon radiation broadens jets, but E_{loss} narrows them, q-g fractions, path-length effects ... First fully corrected measurement of θ_g and z_g in A+A collisions: - no significant modification of z_g distribution - modification of $\theta_a \rightarrow$ hint of collimation # Jet grooming at RHIC What is origin of the R_{d+Au} enhancement? Jet quenching in d+Au? Explore jet mass ... First inclusive p+p and p+Au (groomed) jet mass measurements at RHIC: No CNM effects on (groomed) jet mass ... Other groomed observables explored: z_g and R_g p+p 200 GeV STAR: arXiv: 2003.02114 Au+Au 200 GeV poster D. Nemes #### Jet substructure: dynamical grooming SoftDrop has flexibility to select splittings from different kinematic regions, but how to choose the parameters? - · Removal of soft radiation sensitive to total color charge - Auto-generated grooming condition on a jet-by-jet basis - k_TDrop is remarkably robust to hadronization. Mehtar-Tani, Soto-Ontoso, Tywoniuk: PRD 101 (2020) 034004 A. Soto-Ontoso, Wed 11:10 Thermal background: Mulligan, Ploskon, arXiv:2006.01812 #### Jet substructure in p+p from ALICE First measurement of jet angularities and dynamically groomed distributions θ_g , z_g $$\lambda_{\beta}^{\kappa} \equiv \sum_{i \in \text{jet}} \left(\frac{p_{T,i}}{p_{T,\text{jet}}}\right)^{\kappa} \left(\frac{\Delta R_{jet,i}}{R}\right)^{\beta}$$ PYTHIA provides reasonable description of measured distributions. Test pQCD by systematic measurements for multiple R, β . J. Mulligan, Wed 10:50 E. Lesser (poster) # Jet charge ... Jet charge $$Q_{\kappa, ext{ jet }} = rac{1}{\left(p_T^{ ext{jet }} ight)^{\kappa}} \sum_{ ext{h in jet }} Q_h \left(p_T^h ight)^{\kappa}$$ R. Field et al. (1978) Different flavor jet charges remain distinct in HI collisions. in-medium modification jet flavor dependent separation important to advance understanding of medium effects large p_T : isospin effects dominate p_T < 200 GeV: effects of in-medium parton showers Proposed measurement: charge of individual jet flavors I. Vitev, Wed 12:25 Li, Vitev, PRD 101, 076020 (2020) Jet p_ (GeV) #### Jet charge measurement: q/g contributions in jets D. A. Hangal Thu 13:10 J. Brewer, Wed 7:55 First jet charge measurements in HI collisions: - no significant modification observed in the jet charge width (contrary to PYQUEN) - quark and gluon-like fractions from template fitting centrality independent and in agreement with pp data BUT: current analysis relies on PYTHIA template fitting Going beyond templates → toward data driven measurement of q and g jet modification pp: Metodiev, Thaler, *PRL* 120 (2018) 24, 241602 Komiske, Metodiev, Thaler, *JHEP* 11 (2018) 059 Brewer, Thaler, Turner, in preparation CMS arXiv: 2004.00602 ## Heavy-flavor jet substructure in p+p at the LHC V. Kucera: Wed 13:05 X. Wang: Wed 13:45 D^0 -tagged jets grooming via iterative declustering $\mathbf{n_{SD}}$: number of hard splittings in jet fragmentation Less hard splittings for D⁰-tagged jets than for inclusive → harder *c*-quark fragmentation First direct measurement of the dead cone! → Suppression of radiation toward small angles #### b-jet shape measurements: data provide excellent opportunity to improve modeling of b-jet production and fragmentation CMS, arXiv: 2005.14219 ### Jet quenching in the hadron gas Late stage hadronic interactions explored within SMASH, high-p_T particles in a radially expanding hadron gas QGP: $$= rac{\langle q_{\perp}^2 angle_L}{L}, \qquad \hat{e}= rac{\langle q_{\parallel}^2 angle_L}{L}$$ hadron gas: $$\tilde{q} = \frac{\langle q_{\perp}^2 \rangle}{\lambda_{mfp}}, \qquad \tilde{e} = \frac{\langle q_{\parallel}^2 \rangle}{\lambda_{mfp}}$$ For reshuffling jet shapes the full hadron gas can be approximated with a pion gas and constant $\sigma = 100$ mb. Reasonable to neglect E_{loss} in the hadronic stage for single-particle or even jet R_{AA} , but for substructure observables and disentangling medium effects, the hadronic phase might be important (up to particle $p_T = 8-10 \text{ GeV}$)! #### **JETSCAPE** W. Fan, Mo 13:35 C. Sirimanna, Wed 11:30 C. Park, Wed 13:05 M. Kordell, Thu 10:55 - Modular framework, allows for study of different physics concepts in a consistent environment. - Applicable to full range of HI phenomenology. - Bayesian analysis enables systematic model-to-data comparison JETSCAPE "PP19" tune provides reasonable agreement with experiments and PYTHIA at mid-rapidity |y|<2. #### Hydrodynamics - Event-by-event VISHNew Hydro (2+1D) - TRENTO (2+1D) initial conditions with free streaming Jet evolution - MATTER + LBT - Switching virtuality between MATTER and LBT shower, $Q_0 = 1, 2, 3 \text{ GeV}$ - $\hat{q} \propto \alpha_s^2 T^3 \ln \left(\frac{cE}{\alpha_s T} \right)$ based on HTL where $\alpha_s = 0.25$ Medium response - Recoils: Kinetic theory based approach - Medium constituents kicked out by jet propagate in jet shower - Energy/momentum from medium subtracted from jet signals slide courtesy C. Park #### **JETSCAPE** Double ratio of jet R_{AA} relative to R=0.2 close to unity well reproduced, as well as jet structure, v₂ ... #### Jet fragmentation function #### Jet v₂, v₃ ## Instead of summarizing the summary ... 1st Hard Probes conference (2004) "Status and perspectives of jets and high-p_T physics" (given by P. Jacobs) #### Summary and Outlook Partonic energy loss in nuclear collisions at RHIC is firmly established - broadly consistent with pQCD-based energy loss models - present measurements supply significant lower bound to initial color charge density But it promises much more: detailed study of interplay between fragmentation and thermalization may supply new and unique probes of the dynamics - This is hard, we are only at the beginning - Intermediate $p_T \sim 5-10$ GeV/c appears to provide a laboratory in which we can isolate the various physics #### Instead of summarizing the summary ... 1st Hard Probes conference (2004) "Status and perspectives of jets and high-p_T physics" (given by P. Jacobs) #### Summary and Outlo and the LHC Partonic energy loss in nuclear collisions at RHIC is firmly established models really advanced - broadly consistent with pQCD-based energy loss models - present measurements supply significant lower bound to initial color charge density rich spectrum of observables Yes, still true. But we made a great progress! But it promises much more: detailed study of interplay between fragmentation and thermalization may supply new and unique probes of the dynamics - This is hard, we are only at the beginning - Intermediate $p_T \sim 5-10$ GeV/c appears to provide a laboratory in which we can isolate the various physics We have a large reach in p_T now, but the "intermediate" p_T will probably teach us most ... Probes '04 Jets and High pT 43