Recent results from PHENIX

Marzia Rosati Iowa State University

The PHENIX Experiment at RHIC

FNIX

PHENIX exploited RHIC versatility:

- > 16 years of operation
- > 9 collision species
- > 9 collision energies

Outline

- > Small systems
 - Quarkonia
 - Heavy Flavor production
 - Hadron production
 - Jet modification
 - Photon production

- > Large systems
 - Hadron production
 - Heavy Flavor production
 - Jet modification

Quarkonia Production in p+p collisions

> LO-NRQCD+CGC calculations overestimate the data at low p_T .

> The NLO-NRQCD calculations are consistent with the data at intermediate p_T , 3-5 GeV/c but systematically below the data

ENIX

Quarkonia Production in p+p collisions

> Quarkonia angular distributions provide an additional handle on distinguishing $\tilde{\lambda} = \frac{\lambda_{\theta} + 3\lambda_{\phi}}{1 - \lambda_{\phi}}$ production mechanisms.

 $\frac{d\sigma}{d(\cos\vartheta)d\varphi} \propto 1 + \lambda_{\vartheta}\cos^2\vartheta + \lambda_{\vartheta\varphi}\sin(2\vartheta)\cos\varphi + \lambda_{\phi}\sin^2\vartheta\cos2\varphi$

Helicity (HX): J/y momentum in lab frame, explores final state effects Gottfried–Jackson (GJ): beam particle momentum, fixed target experiments. Collins–Soper (CS): bisector of two colliding beams.

 $ilde{\lambda}$ is a frame-invariant parameter

5

6/1/20

Quarkonia Production in p+p collisions

> Quarkonia angular distributions provide an additional handle on distinguishing production mechanisms.

FNIX

No p_T dependence, given large uncertainty
Data cannot rule out the models

 $\frac{\lambda_{\theta} + 3\lambda_{\phi}}{1 - \lambda_{\mu}}$

Quarkonia in Small Systems

 Very strong suppression at forward rapidity in 0-5%, little centrality dependence at backward
 At forward rapidity, strong p_T dependent suppression

> Sanghoon Lim 02/06/2020, 11:20

Quarkonium in p+Al, p+Au, ³He+Au

- Projectile and target size dependence
- Differential studies in p_T, rapidity, and centrality

- » nPDF show good agreement at forward
- > nPDF + absorption show better agreement with the p/³He+Au at backward rapidity

B/D meson > PHENIX measures electrons' distance of closest approach to extract heavy flavor production and $b \rightarrow e$ and $c \rightarrow e$ yields. $DCA_T = L - R$ Phys. Rev. 99, 092003 1.50 < p^e_T < 2.00 p+pat√s_{NN} = 200 GeV Au+Au MB √s_{NN}=200 GeV o/dp_dy) [mb (GeV/c) (a) < 0.35 PHENIX 2011 p+p 10³ 10² 10 Inclusive HF Electrons [PRC 84, 044905] Data / (c+b 100.15 -0.1 -0.050 0.05 0.1 0.15 DCA_T [cm] Electron p_ [GeV/c] Ajeeta Khatiwada 01/06/2020, 13:35 **XENIX** 6/1/20 M. Rosati - HP2020

 e^{\pm}

R

9

Heavy Flavor: b->e and c->e

Centrality dependence of b-> e and c->e

- > T-Matrix model
 - large diffusion const ($2\pi T_D = 30$) inconsistent with data.
- > Not enough precision to discriminate on parameters for DGLV

Ajeeta Khatiwada 01/06/2020, 13:35

bb production at forward rapidity

 $\sigma_{bb} (\mu b) = 13.1 \pm 0.6 \pm 1.5 \pm 2.7 \ mb$

_p+p

M. Rosati - HP2020

6/1/20

11

bb production at forward rapidity

ΕΝΙΧ

6/1/20

12

bb production at forward rapidity

(a) (b) **BB** decay Primary decays are unlike sign Lepton pairs

ΕΝΙΧ

BB decay (oscillation) Primary decays are like sign Lepton pairs

13

6/1/20

Hadron R_{pAu} for different particle species

Baryon enhancement observed in p+Au
 Phi and pion mesons have similar modification despite different mass

π^0 Production in small systems

Axel Drees 04/06/2020, 11:35

Hadron Production in Cu+Au, U+U

Difference in R_{AA} for K* and φ meson versus π⁰ and η at low p_T: enhancement in mesons containing strange quarks

 Integrating R_{AA} for meson p_T>5GeV no difference

> Axel Drees 04/06/2020, 11:35

Photon-Hadron Correlations in Au+Au and d+Au

ENIX

Au+Au clear suppression at low ξ and enhancement at high ξ
 d+Au I_{dA} is consistent with unity across all ξ ranges

Photon-Hadron Correlations in Au+Au

The enhancement is largest for softer jets and for the full away-side integration range, implying that jets with lower energy are broadened more than higher energy jets.

- > Enhancement of yield ($I_{AA} > 1$) at low associate particle momentum
- > Depletion ($I_{AA} < 1$) at high associate particle momentum

ΕΝΙΧ

Cheuk-Ping Wong 01/06/2020, 13:55

π^0 -Hadron in Au+Au vs associated p_T

Calculate ratio in yields between Au+Au jet function and p+p baseline

- Shows modification to away-side jet peak at substructure level
- Skirt of jet is the first to see significant enhancement, most intense enhancement at wide angles

π^0 -Hadron Correlations

FNIX

Larger yield modification in Au+Au collisions than in d+Au collisions
Cheuk-Ping Wong

M. Rosati - HP2020

01/06/2020, 13:55

Jets Yields in p+p and Cu+Au

- Jet reconstructed with anti-k_T algorithm with R=0.2
- Spectra unfolded using the Singular Value
 Decomposition method to account for detector effects and centrality dependent underlying event fluctuations.

Milap Patel 02/06/2020, 11:40

ENIX

> R_{AB} is suppressed systematically as a function of centrality.

ΕΝΙΧ

- > R_{AB} is suppressed systematically as a function of centrality.
- > Suppression is comparable to π^0 suppression and shows no p_T dependence.

Direct Photon Cross Section at $\sqrt{s} = 510$ GeV

FNIX

- > First measurement of direct photon cross section in pp $\sqrt{s} = 510 \text{ GeV}$
- A NLO pQCD calculation agrees well with the measurement

6/1/20

Direct Photon in Au+Au

Inclusive photons R_{γ} = Photons from hadron decays

- New independent analysis of direct photon emission from data set with 10* statistics
 - \Rightarrow Consistent with previous results

ΕΝΙΧ

Photon Yields in small and large systems

Common scaling independent of collision energy or centrality for Au+Au and Pb+Pb at different energies;

very different from Ncoll-scaled p+p

Veronica Canoa Roman 01/06/2020 12:00

Summary

- J/ψ production provide insights on production mechanism and shows big change when increasing nuclear target size, small change when increasing projectile size
- > Measurement of $c \rightarrow e$ and $b \rightarrow e$ spectra in p+p and Au+Au centrality dependence.
- Single hadron R_{AA} independent of collision species when selecting for similar N_{part} in Au+Au and U+U. Strangeness very important at low p_T but not at high p_T
- Correlation measurements show away-side broadening Indicates large-angle radiation of high-p_T partons
- Photon enhancement in small systems is important additional evidence in support of QGP droplet formation in small systems

6/1/20

PHENIX Posters

- 1. "Heavy quark nuclear modification at forwardrapidity in Au+Au collisions $at_{\sqrt{sNN}=200 \text{ GeV}}$ " by Cesar Luiz da Silva
- 2. "Direct Photon as the light at the end of the tnnel" by Niveditha Ram
- 3. *"Jet modification with two particle correlations in Au+Au collisions at PHENIX"* by Megan Elizabeth Connors
- *4. "Direct photon measurements in pp collisions at sqrt(s)=510 GeV"* by PHENIX Zhongling Ji
- 5. "π⁰ Azimuthal Anisotropy in Central d+Au Collisions at 200 GeV with PHENIX at RHIC" by Carlos E. Perez Lara
- 6. *"Low pT direct photon in small systems at PHENIX experimen*t" by Veronica Canoa Roman
- 7. "Neutral pion v_2 at low and high pT in Central dAu collisions measured with PHENIX at the RHIC top energies " by Carlos Eugenio Perez Lara
- 8. "PHENIX measurement of the high pT direct photon production in p+A collisions and its implication to the initial state of the system "by Niveditha Ramasubramanian
- 9. *"PHENIX Results on In–Medium Jet Modification Using π0 and Direct Photon– Triggered Two–Particle Correlations*" by Anthony Hodges
- 10. "*PHENIX results on quark flavor dependence of flow in Au+Au collisions" by* Takashi Hachiya

Talks

- 1. "New PHENIX Results on Mid-Rapidity Bottom and Charm Production in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV" by Ajeeta Khatiwada 01/06/2020, 13:35
- 2. "PHENIX results on direct photon production from Au+Au collisions" by Veronica Canoa Roman 01/06/2020, 12:00
- *3. "Exploring potential jet modification in small collision systems with two particle correlations at PHENIX"* by Cheuk–Ping Wong 01/06/2020, 13:55
- 4. "*PHENIX results on J/psi from small systems*" by Sanghoon Lim 02/06/2020, 11:20
- 5. "*Reconstructed Jet Measurements in p+p, p+Au and Cu+Au collision using PHENIX*" by Milap Patel 02/06/2020, 11:40
- 6. "*PHENIX results on nuclear modification of hadron production in small and large systems*" by Axel Drees 04/06/2020, 11:35

Testing hydro by controlling geometry

SONIC model: Habich, M., Nagle, J. L. & Romatschke, Eur. Phys. J. C 75, 15 (2015).

 \geq

ENIX

6/1/20

Testing hydro by controlling geometry

> v2 and v3 ordering matches e_2 and e_3 ordering in all systems

- Regardless of mechanism, the correlation is geometrical
- > v_2 and v_3 vs p_T described very well by hydro in all three systems

iEBE-VISHNU: C. Shen et al., Phys. Rev. C 95, 014906 (2017).

6/1/20

SONIC: M. Habich et al., Eur. Phys. J. C 75, 15 (2015).

Testing hydro by controlling geometry

> Results are confirmed by three-subsystem two-particle correlation (3x2PC)

> Apparent violation of naive EP resolution scaling is likely explained by beam angle, beam offset, and central carriage misalignment

34

6/1/20