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Tomographic medium studies: jets
Jet quenching – how do we see it?
Correlations (of all sorts) for jet studies in QGPq
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Need QGP tomography
To directly access plasma properties
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Tomographic probes for QGP

X-ray 
source

Idea - use calibrated external probes to
study medium properties 

For Heavy Ion collisions → use self-generated (in)medium 
probes → hard probes!

“Hard” == large scale → theory: suitable for perturbative QCD 
calculations high momentum transfer Q2

high transverse momentum pT
high mass m

Courtesy of J. Klay
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What are Jets? In theory: fragmented hard-scattered partons →
collimated spray of hadrons produced by energetic q or g

Why Jets? Jets are produced in the earliest 
phase of the collision
Jets are calibrated probes

Factorization of jet/particle production:
yields described by convolution of 

⊗ �𝜎𝜎(𝑖𝑖𝑖𝑖 → 𝑘𝑘𝑘𝑘) ⊗ 𝐷𝐷𝑘𝑘ℎ(𝑧𝑧′,𝑝𝑝𝑇𝑇2)

PDF ⊗ NLO ⊗ FF

Why Jets?

hadrons
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hadrons

leading
particle

leading particle

𝑓𝑓𝑎𝑎𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑄𝑄2)
q 𝑓𝑓𝑏𝑏

𝑗𝑗(𝑥𝑥𝑗𝑗 ,𝑄𝑄2)
�𝜎𝜎(𝑖𝑖𝑖𝑖 → 𝑘𝑘𝑘𝑘)
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𝐷𝐷𝑘𝑘ℎ(𝑧𝑧′, 𝑝𝑝𝑇𝑇2)

𝐷𝐷𝑙𝑙ℎ(𝑧𝑧′, 𝑝𝑝𝑇𝑇2)

𝑓𝑓𝑎𝑎𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑄𝑄2)

𝑓𝑓𝑏𝑏
𝑗𝑗(𝑥𝑥𝑗𝑗 ,𝑄𝑄2)



Jet Production Cross-Section

JHEP 09 (2017) 020PRL 97 (2006)252001

RHIC
LHC

Tevatron

PRL101(2008)062001

Jets are:
• well-calibrated probes: inclusive jet cross-sections described

by NLO calculations over orders of magnitude in 𝑝𝑝𝑇𝑇 and 𝑠𝑠
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QGP Properties via Jets

 Jets studies allow to observe medium evolution/equilibration and 
explore medium properties at different scales

*except for nPDF effects

hadrons

q
q

hadrons

leading
particle

leading particle

Jet Tomography: 

• Production of jets is unmodified* –
short-distance process 

( �𝜎𝜎(𝑖𝑖𝑖𝑖 → 𝑘𝑘𝑘𝑘) – unchanged)

• Jets are calibrated  probes – well-
understood (and measured!) in pp

What happens if partons traverse a high energy density colored medium?
𝐷𝐷𝑘𝑘ℎ(𝑧𝑧′, 𝑝𝑝𝑇𝑇2)

𝐷𝐷𝑙𝑙ℎ(𝑧𝑧′, 𝑝𝑝𝑇𝑇2)
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Comparing particle production rates at high pT provides (indirect) information 
on the fate of the jets in QGP

Nuclear Modification Factor RAA – the first tool for jet quenching studies

Number of binary collisions < 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏>
is extracted from Glauber calculations

Jet Quenching: the start of the Era

𝑅𝑅𝐴𝐴𝐴𝐴 𝑝𝑝𝑇𝑇 =
𝑑𝑑2𝑁𝑁𝐴𝐴𝐴𝐴/𝑑𝑑𝑝𝑝𝑇𝑇𝑑𝑑𝑑𝑑

< 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏> 𝑑𝑑2𝑁𝑁𝑝𝑝𝑝𝑝/𝑑𝑑𝑝𝑝𝑇𝑇𝑑𝑑𝑑𝑑
PRL 88 (2002)022301

enhancement
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Comparing particle production rates at high pT provides (indirect) information 
on the fate of the jets in QGP

Nuclear Modification Factor RAA – is the first tool for jet quenching studies

RAA shape/level depends on steepness
of the spectra 

How reliable are < 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏> calculations?

Jet Quenching: the start of the Era

𝑅𝑅𝐴𝐴𝐴𝐴 𝑝𝑝𝑇𝑇 =
𝑑𝑑2𝑁𝑁𝐴𝐴𝐴𝐴/𝑑𝑑𝑝𝑝𝑇𝑇𝑑𝑑𝑑𝑑

< 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏> 𝑑𝑑2𝑁𝑁𝑝𝑝𝑝𝑝/𝑑𝑑𝑝𝑝𝑇𝑇𝑑𝑑𝑑𝑑
PRL 88 (2002)022301

enhancement
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Binary Scaling and RAA

PLB 710 (2012) 256

CMS-PAS HIN-12-008

PLB 715 (2012) 66

 Colorless probes check Nbin scaling:
Isolated photons   Z → µ+µ− W → µν

 Nbin is well-modeled and Nbin-scaling for hard processes is confirmed 
experimentally 10



Jet studies, experimentally

Jets in e+e− collision Jets in AA collisions

Choice of tools (in hard regime):

Pros: straightforward versatile                                  Eparton

Cons: least differential                     multiple BG sources,                     ambiguous,
no direct E measure                     fluctuations

Spectra/Production rates Jets/DijetsDihadron correlations
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PHENIX: Phys. Rev. Lett. 91 (2003) 072303  STAR: Phys. Rev. Lett. 91 (2003) 072304

PHOBOS: Phys. Rev. Lett. 91 (2003) 072302  BRAHMS: Phys. Rev. Lett. 91 (2003) 072303

Evidence for ‘jet quenching’ in central 
AuAu at RHIC

Evidence of ‘jet non-quenching’ in 
dAu (and peripheral AuAu)

Medium created is dense and opaque

Significant Energy Loss in the 
Medium

Evidence for Jet-Medium Interactions
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PHENIX: Phys. Rev. Lett. 91 (2003) 072303  STAR: Phys. Rev. Lett. 91 (2003) 072304

PHOBOS: Phys. Rev. Lett. 91 (2003) 072302  BRAHMS: Phys. Rev. Lett. 91 (2003) 072303

Evidence for ‘jet quenching’ in central 
AuAu at RHIC

Evidence of ‘jet non-quenching’ in 
dAu (and peripheral AuAu)

Evidence for Jet-Medium Interactions
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 Signature two-particle 
correlation result:
 Disappearance of the away side jet

in central AuAu collisions:
evidence for strongly interacting
medium

 Effect vanishes in peripheral/d+Au 
collisions



PbPb @ 2.76 TeV

AuAu @ 0.2 TeV
dAu @ 0.2 TeV

Signature Results: the Ridge

Initial Assessment:
• Present in AA, not in dA
• Correlated with Jet direction
• QGP phenomenon

Early Ideas on Ridge origin:
• In-medium radiation +long. flow push?
• Sonic boom with “splash-back”?
• Turbulent color fields? 14



JHEP11(2016)055

NOW:
• Ridges are everywhere: high 
multiplicity pp, pA
• “Soft” phenomenon

Jet studies:
• Underlying event (UE) is anisotropic; 
correlations have to be taken into account 
while extracting the jet signal

PLB 718 (2013) 795 

High multiplicity pp @ 7 TeV High multiplicity pPb @ 5 TeV

Dijets PbPb @ 2.76 TeV

Signature Results: the Ridge

15



Lets get us some Jets!

In Theory: jets are proxies for hard-scattered partons
In Experiment: “Jet is what your jet-finder gives you” (P.J.)

Jet is defined by the reconstruction algorithm: 
1) What particles belong to a jet
2) How particle momenta combined into jet pT

Particularly difficult for AA data due to UE background: R choice dilemma

AuAu @ 0.2 TeV

16



Jet Algorithms

Important Requirements for Jet Finders:
 Simple implementation and reproducibility 

(theory/experiment)
 Tolerance to fragmentation details and UE
 Collinear- and infrared-safe

Two classes of Jet Finders:
Cone-Type    

Midpoint Cone (Tev), Iterative Cone (CMS), 
SISCone (LHC),…

 Not Infrared- & Collinear-Safe (but SISCone)
 Usually involve several arbitrary parameters
 Computationally fast
 Disfavored by theorists

Sequential Recombination
kT, Anti-kT, Cambridge/Aachen

 Infrared- & Collinear-Safe by 
construction

 Straightforward, though more 
computationally expensive

 Favored by theorists
17



Sequential Recombination Algorithms

 Sequential recombination methods are based on distance measure:    
𝑑𝑑𝑖𝑖𝑖𝑖 = min(𝑝𝑝𝑇𝑇,𝑖𝑖

2𝜌𝜌,𝑝𝑝𝑇𝑇,𝑗𝑗
2𝜌𝜌) ∆𝑅𝑅

2

𝑅𝑅2
and 𝑑𝑑𝑖𝑖𝐵𝐵 = 𝑝𝑝𝑇𝑇,𝑖𝑖

2𝜌𝜌

 Most commonly used: 
 kT algorithm 𝜌𝜌 = 1 PLB641(2006)57
 anti-kT algorithm 𝜌𝜌 = −1 JHEP 0804 (2008) 063
 Cambridge-Aachen algorithm 𝜌𝜌 = 0 JHEP 9708 (1997) 001

 Do iteratively: 
 compute all distances 𝑑𝑑𝑖𝑖𝑖𝑖 and 𝑑𝑑𝑖𝑖𝑖𝑖, find the smallest
 If smallest is a 𝑑𝑑𝑖𝑖𝑖𝑖, combine (sum four momenta) for 𝑖𝑖 and 𝑗𝑗
 If smallest is a 𝑑𝑑𝑖𝑖𝑖𝑖, call 𝑖𝑖 a jet (remove). Stop then no objects left.

 All three algorithms (+SISCone) are available in the 
Fastjet package: http://fastjet.fr/

1818

http://fastjet.fr/


Dealing with Background

The background in HI events is anisotropic and fluctuating → simple “flat-line” 
subtraction won’t work. Need:

1) Modulated BG (shape!)
2) Corrections/unfolding for fluctuations (or reference smearing)

Two general strategies:
“Subtract then Cluster” “Cluster then Subtract”

Area Subtraction
𝑝𝑝𝑇𝑇

(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑝𝑝𝑇𝑇
(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) − 𝜌𝜌𝐴𝐴𝑗𝑗

𝜌𝜌 – average 𝑝𝑝𝑇𝑇 density for BG w/o jets
𝐴𝐴𝐴𝐴 – jet area from “ghost” counts 

Constituent Subtraction JHEP06(2014)092

19



Full Jet Jet Substructure Jet Constituents

Cartoons courtesy Yi Chen

Jet Inner Workings
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Large-scale structure
Momentum Sharing
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Jet Mass

Jet energy flow
Jet Shapes

Fragmentation Functions
Number density profiles

Jet energy
Jet RAA

Energy balance:
Di-jet, Z-jet, γ-jet



Full Jet Jet Substructure Jet Constituents

Cartoons courtesy Yi Chen

Jet energy
Jet RAA

Energy balance:
Di-jet, Z-jet, γ-jet
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Large-scale structure
Momentum Sharing
(Splitting Function)

Jet Mass

Extended
Jet energy flow

Jet Shapes
Fragmentation Functions
Number density profiles

Jet Inner Workings
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PLB 790 (2019) 108 PRL 113 (2014) 132301

Quenching Effects in Jets

 Details of the energy loss:
 Jet quenching in PbPb collisions is now mapped in jet RAA from 30GeV to 1TeV
 Strong suppression at both HI energies (but this factor of ~2 suppression can be 

accounted for by ~7GeV energy loss)
 All  jets are suppressed: b-jet RAA of similar level with light 𝑞𝑞 and 𝑔𝑔

Mass difference: md=4.8 MeV/c2 vs mb=4.2 GeV/c2

PbPb @ 2.76 TeVPbPb @ 5.02 TeV

https://doi.org/10.1016/j.physletb.2018.10.076


 Di-jets in PbPb:
 Back-to-back, but fraction of imbalanced dijets grows with collision centrality 

(no modifications in pPb collisions)
 Momentum balance is preserved over the entire event
 “Missing” pT in hard sector is balanced by soft hadrons away from jet-axis 23

JHEP 01 (2016) 006

Quenching becomes visible in Dijets

PRL 105 (2010) 252303
Dijet momentum imbalance:

𝐴𝐴𝐽𝐽 =
𝑝𝑝𝑇𝑇,1 − 𝑝𝑝𝑇𝑇,2
𝑝𝑝𝑇𝑇,1 + 𝑝𝑝𝑇𝑇,2

PbPb @ 2.76 TeV



Quenching Effects in Jets
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 Details of the energy loss:
 Dijet, 𝛾𝛾-jet, 𝑍𝑍-jet – energy balance is disturbed by QGP
 (Centrality-dependent) changes in 𝑥𝑥𝐽𝐽𝛾𝛾, 𝑥𝑥𝐽𝐽𝑍𝑍 momentum balance

γ

PLB 785 (2018) 14

Both side of dijet are quenched → dijet collection is surface-biased →
Use colorless probes to reduce/change geometry bias

Ζ
PRL 119 (2017) 082301PLB 789 (2019) 167

⁄ 1
𝑁𝑁 𝛾𝛾

⁄
𝑑𝑑𝑁𝑁

𝑗𝑗𝛾𝛾
𝑑𝑑𝑥𝑥

𝑗𝑗𝛾𝛾

⁄ 1
𝑁𝑁 𝑍𝑍

⁄
𝑑𝑑𝑁𝑁

𝑗𝑗𝑍𝑍
𝑑𝑑𝑥𝑥

𝑗𝑗𝑍𝑍

PbPb @ 5.02 TeV



Jet fragmentation functions: fractional momentum 
distribution within the jets

25

Modification of fragmentation functions in PbPb
PLB B 739 (2014) 320 PbPb @ 2.76 TeV

 Centrality dependent change 
in fragmentation patterns

 Enhancement at low pT / 
depletion at intermediate 
momenta in central collisions

0-10%/60-80%

50-60%/60-80%

Jet Longitudinal Structure



Jet Longitudinal Structure

 Fragmentation function studies
 Little/no medium effects in peripheral events (vacuum-like 

fragmentation, confirmed with pp reference)
 Excess of soft fragments/depletion at intermediate momenta
 Excess of high-pT tracks – evidence of color-charge effects? 26

R
D

(z
)  

= 
Pb

Pb
 /

pp

PRC 98 (2018) 024908

R
D

(z
)  

= 
Pb

Pb
 /

pp

PbPb @ 5.02 TeV
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 Quark-rich γ-jet sample allows tests for color-charge effects
 Enhancement of particles carrying small  momentum fraction
 Depletion of mid/high momentum particles

=ln(1/z)

PRL 121 (2018) 242301

γ

PRL 123 (2019) 042001

Fragmentation for γ +Jets
PbPb @ 2.76 TeV
PbPb @ 5.02 TeV
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Jet Inner Workings: Shapes

Jet shapes: measure transverse structure of jet momenta

Fractional transverse energy distribution: 𝜌𝜌(𝑟𝑟) = 1
𝑁𝑁𝑗𝑗

1
𝛿𝛿𝑟𝑟
∑𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒

∑
𝑡𝑡𝑟𝑟𝑟𝑟 ∈�𝑟𝑟𝑎𝑎,𝑟𝑟𝑏𝑏)

𝑝𝑝𝑇𝑇
𝑡𝑡𝑡𝑡𝑡𝑡

∑𝑡𝑡𝑟𝑟𝑟𝑟 ∈[𝑜𝑜,𝑅𝑅) 𝑝𝑝𝑇𝑇
𝑡𝑡𝑡𝑡𝑡𝑡

0-10%70-100%

PLB 730 (2014) 243

 Jet Shapes: PbPb to pp ratio
 Little/no medium effects in peripheral events
 Enhancement at low pT / larger r in central collisions

PbPb @ 2.76 TeV



Inclusive jets: q+g
PLB 730 (2014) 243 
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Jet Shapes: quark vs. gluon

PRL 121 (2018) 242301
γ-tagged-jets: ~q

r
 Jet Shapes: quark vs. gluon

 Similar jet shape modification trends with inclusive jets in central PbPb 
data: energy shift towards larger radii

 What about the magnitudes?  Can’t compare ratios directly; must mind 
the reference!
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Jet Shapes: Outside the Box

That is, Out of Cone: using 2𝐷𝐷 correlations for jets and charged particles
allow to measure full energy flow profile, capture entire fragmentation
pattern extending past clustering parameter 𝑅𝑅

 Data-driven method for extracting long-range underlying event correlations to separate those 
from the jet peaks

 Allows to study “cross-talk” between the jets and hydrodynamically expanding medium



Jet Shape Modifications

PLB 730 (2014) 243 JHEP11(2016)055

Leading Subleading

PbPb/pp PbPb/pp

31
Can now measurement of jet shapes up to large radial distances

(Compare to previous measurement in light blue)

PbPb @ 2.76 TeV



∆𝑟𝑟
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Jet Shapes: In/Out of Cone Energy

PRC 100 (2019) 064901
JHEP05(2018)006

 Radial profile of transverse momenta
 Central PbPb: large ∆r enhancement in soft sector, loss of momenta in 

hard constituents  
 Jet energy is redistributed towards softer fragments and large radii, 

significant out of cone contributions

PbPb @ 5.02 TeV



 Grooming:
 Idea: to isolate hard structure (hardest/earliest splitting) from soft BG 

contamination

 Several Approaches
 Filtering: re-cluster jets with smaller 𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 keep hardest subjets
 Trimming: re-cluster with smaller 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, keep subjets with 𝑝𝑝𝑇𝑇 > 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗

 Pruning: re-cluster with kT or C/A and in each clustering step discard 
subjet if ∆𝑅𝑅 > 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and min(𝑝𝑝𝑇𝑇,1,𝑝𝑝𝑇𝑇,2)

𝑝𝑝𝑇𝑇,1+𝑝𝑝𝑇𝑇,2
< 𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛

 Commonly used: Soft Drop algorithm:
 Start with anti-kT jet, re-cluster with CA

 Undo the last clustering step, get 𝑧𝑧𝑔𝑔 = min(𝑝𝑝𝑇𝑇𝑇,𝑝𝑝𝑇𝑇𝑇)
𝑝𝑝𝑇𝑇𝑇+𝑝𝑝𝑇𝑇𝑇

and ∆𝑅𝑅

 Stop if 𝑧𝑧𝑔𝑔 > 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐( ⁄∆𝑅𝑅
𝑅𝑅)𝛽𝛽, else un-cluster again

33

Jet (Hard) Substructure Studies

pT,2 pT,1



Subjet Momentum Sharing

34

PRL 120 (2018) 142302 

pT,2

pT,1

Symmetric splitting
pT,2 pT,1

Small Zg Zg ~ 0.5

Hard/soft splitting

 Parton splitting is modified in central PbPb collisions:
 Higher suppression for jets with more symmetric subjets
 New insights on in-medium effects for theory, different interpretations
 Medium recoil? Modified splitting? Coherent emitter?

𝑧𝑧𝑔𝑔 =
min(𝑝𝑝𝑇𝑇𝑇,𝑝𝑝𝑇𝑇𝑇)
𝑝𝑝𝑇𝑇𝑇 + 𝑝𝑝𝑇𝑇𝑇

PbPb @ 5.02 TeV



Subjet Momentum Sharing

 Parton splitting for charged jets: 
 Enhancement of the number of small-angle splittings/ suppression of the 

large-angle symmetric splittings in central PbPb collisions
 Number of splittings passing soft drop cut shifts down – color-charge effects?

∆𝑅𝑅
↓ ↓

PLB 802 (2020)135227

PbPb @ 2.76 TeV
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Jet Mass Measurements

 Jet mass distributions:
 No significant modifications are observed
 Large increases in jet mass predicted by quenching models 

are excluded by the data 36

Jet mass from charged tracks Jet mass from calorimeter energy

PLB 776(2018) 249 ATLAS-CONF-2018-014



Summary & Outlook

“Take-home” Points:

 Hard probes for tomographic studies of the Quark Gluon Plasma is
a new frontier for QCD studies

 Jets provide a versatile set of tools for studying properties of the
QGP medium at different scales

 Jet quenching manifestation in jet constituent distribution: small
modifications in the core of the jet, significant energy shift from
hard to soft sector, from jet core to larger radii

 More to come: RHIC vs LHC, systematic studies of R, color-
charge and quark flavor effects – check out Jet Sessions here at
HP2020!

37

γ

∆𝑅𝑅
↓ ↓

Ζ



LHC Upgrades @ LS2

38

 ALICE
 New Inner Tracking system (ITS)
 Muon Forward Tracker (MFT)

upgrade
 New Fast Interaction trigger (FIT)
 TPC (readout) upgrade

 ATLAS
 Rebuilding Muon Wheels
 Fast Tracker
 Trigger, DAQ, electronics upgrades



39

LHC Upgrades @ LS2

 LHCb
 New (faster) vertex positioning

detector (VeloPix)
 RHIC detectors upgrade
 New Tracker (silicon-microstrip

and scintillating fibers (SciFi))
 Read-out upgrade with fully

software based trigger

 CMS
 Pixel Detector improvements
 Hadronic and EM Calorimeters

upgrades
 Muon System upgrade
 New beam pipe



As we speak, a new “state-of-the-art jet detector at RHIC” is under 
construction at BNL

Early studies indicate substantial differences in jet quenching
systematics at 200 GeV vs 5 TeV – unique opportunity to test QCD
at variable T 40

New Jet Detector at RHIC

 sPHENIX:
 1.4T Magnetic Field
 Large acceptance
 Precision tracking
 Hadronic & EM 

calorimetry



41

Looking into the Future

 Jets Now:
 Filling the “map”
 Little options for RHIC/LHC overlap
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Looking into the Future

 The Future:
 RHIC/LHC overlap
 Extended kinematic coverage/precision 



Thank you 
and 

Enjoy the Conference!
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What are Jets? In theory: fragmented hard-scattered partons →
collimated spray of hadrons produced by energetic quark or gluon

Factorization of jet production:

𝑑𝑑𝜎𝜎𝑗𝑗𝑗𝑗𝑗𝑗(𝑘𝑘)

𝑑𝑑𝑝𝑝𝑇𝑇2𝑑𝑑𝑦𝑦
= �

𝑖𝑖,𝑗𝑗

𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑥𝑥𝑗𝑗 𝑓𝑓𝑎𝑎𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑄𝑄2)𝑓𝑓𝑏𝑏
𝑗𝑗(𝑥𝑥𝑗𝑗 ,𝑄𝑄2) �𝜎𝜎(𝑖𝑖𝑖𝑖 → 𝑘𝑘𝑘𝑘)

Jet Production Cross-section

a,b – initial nucleons i,j – initial partons
𝑥𝑥𝑖𝑖 = ⁄𝑝𝑝𝑖𝑖 𝑝𝑝𝑎𝑎 𝑥𝑥𝑗𝑗 = ⁄𝑝𝑝𝑗𝑗 𝑝𝑝𝑏𝑏

�𝜎𝜎(𝑖𝑖𝑖𝑖 → 𝑘𝑘𝑘𝑘) – partonic cross-section, “hard” process

𝑓𝑓𝑎𝑎𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑄𝑄2) – parton distribution function, universal “soft” physics,
extracted from DIS

hadrons

q

hadrons

leading
particle

leading particle

𝑓𝑓𝑎𝑎𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑄𝑄2)
q 𝑓𝑓𝑏𝑏

𝑗𝑗(𝑥𝑥𝑗𝑗 ,𝑄𝑄2)
�𝜎𝜎(𝑖𝑖𝑖𝑖 → 𝑘𝑘𝑘𝑘)
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Parton distribution functions for bound nucleons  are different
than that of a free proton

defined as (nCTEQ15, PRD 93, 085037): 

where Bound nucleon PDFs 𝑓𝑓 ⁄𝑝𝑝 𝐴𝐴
𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑄𝑄2

are connected to free nucleon PDF as 
(EPPS16, EPJ C77(2017)163):

Nuclear PDF effects are important to account 
for to properly map QGP properties

→ pA collisions

Nuclear PDF effects

45

hadrons

q
q

hadrons

leading
particle

leading particle

𝑓𝑓 ⁄𝑎𝑎 𝐴𝐴,𝑍𝑍
𝑖𝑖 (𝑥𝑥𝑖𝑖 ,𝑄𝑄2) 𝑓𝑓 ⁄𝑏𝑏 𝐴𝐴,𝑍𝑍

𝑗𝑗 (𝑥𝑥𝑗𝑗 ,𝑄𝑄2)
𝑓𝑓 ⁄𝑎𝑎 𝐴𝐴,𝑍𝑍
𝑖𝑖 (𝑥𝑥𝑖𝑖 ,𝑄𝑄2) – Nuclear parton distribution functions,

𝑓𝑓 ⁄𝑝𝑝 𝐴𝐴
𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑄𝑄2 = 𝑅𝑅𝐴𝐴𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑄𝑄2 𝑓𝑓𝑝𝑝𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑄𝑄2

𝑓𝑓 ⁄𝑎𝑎 𝐴𝐴,𝑍𝑍
𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑄𝑄2 = 𝑍𝑍

𝐴𝐴
𝑓𝑓 ⁄𝑝𝑝 𝐴𝐴
𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑄𝑄2 + 𝐴𝐴−𝑍𝑍

𝐴𝐴
𝑓𝑓 ⁄𝑛𝑛 𝐴𝐴
𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑄𝑄2

LHC dijets
LHC W, Z



To get particle yields from jets:
need to fold in fragmentation functions

𝑑𝑑𝜎𝜎ℎ(𝑘𝑘)

𝑑𝑑𝑝𝑝𝑇𝑇ℎ 2𝑑𝑑𝑦𝑦ℎ𝑑𝑑𝑧𝑧′
=
𝑑𝑑𝜎𝜎𝑗𝑗𝑗𝑗𝑗𝑗 𝑘𝑘

𝑑𝑑𝑝𝑝𝑇𝑇2𝑑𝑑𝑑𝑑
1
𝑧𝑧′2

𝐷𝐷𝑘𝑘ℎ(𝑧𝑧′,𝑝𝑝𝑇𝑇2)

𝐷𝐷𝑘𝑘ℎ(𝑧𝑧′,𝑝𝑝𝑇𝑇2) – fragmentation functions, 
universal, extracted  from 𝑒𝑒+𝑒𝑒− annihilation (PETRA, LEP)
and hadronic collisions (UA1,…)

Non-perturbative;  limitations at low-pT and for PID

Jets and Particle Production

𝑧𝑧′ = ⁄𝑝𝑝𝑇𝑇ℎ 𝑝𝑝𝑇𝑇

hadrons

q

hadrons

leading
particle

leading particle

𝑓𝑓𝑎𝑎𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑄𝑄2)
q 𝑓𝑓𝑏𝑏

𝑗𝑗(𝑥𝑥𝑗𝑗 ,𝑄𝑄2)
�𝜎𝜎(𝑖𝑖𝑖𝑖 → 𝑘𝑘𝑘𝑘)

𝐷𝐷𝑘𝑘ℎ(𝑧𝑧′, 𝑝𝑝𝑇𝑇2)

𝐷𝐷𝑙𝑙ℎ(𝑧𝑧′, 𝑝𝑝𝑇𝑇2)
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47
Min Bias Data, charged hadrons |h|<1

“Soft” vs “Hard” division based on calorimeter clusters ET>1.1 GeV 

What is “high pT”?

In HEP studies, hadron collisions are traditionally subdivided into “soft” and 
“hard” by the presence of jets

PRD 65 (2002) 072005

CDF
 Inclusive charged hadron

cross-sections from 𝑝𝑝𝑝̅𝑝
collisions above 6 GeV/c
are dominated by jet
production

 PID data from RHIC/LHC 
suggest similar threshold



 Signature two-particle 
correlation result:
 Disappearance of the away side jet 

in central Au+Au collisions
• Evidence for strongly 

interacting medium
 Effect vanishes in peripheral/d+Au 

collisions

4<pT
trig<6 GeV/c        2<pT

assoc<pT
trig

PRL 91 (2003) 

072304

Signature Results: Disappearance

 Two high-pT hadrons
 Reappearance of the away-side jet

The picture can't be displayed. 3<pT
trig<4 GeV/c        1.3<pT

assoc<1.8
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 Signature two-particle 
correlation result:
 Disappearance of the away side jet 

in central Au+Au collisions
• Evidence for strongly interacting 

medium
 Effect vanishes in peripheral/d+Au 

collisions

4<pT
trig<6 GeV/c        2<pT

assoc<pT
trig

PRL 91 (2003) 

072304

 One high-pT, one low-pT trigger
 Reappearance of the away-side jet
 “Mach cone era”: Double-hump 

structure taken as hint of additional 
physics phenomena

The picture can't be displayed. 3<pT
trig<4 GeV/c        1.3<pT

assoc<1.8

Signature Results: Disappearance
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 Signature two-particle 
correlation result:
 Disappearance of the away side jet 

in central Au+Au collisions
• Evidence for strongly interacting 

medium
 Effect vanishes in peripheral/d+Au 

collisions

4<pT
trig<6 GeV/c        2<pT

assoc<pT
trig

PRL 91 (2003) 

072304

 One high-pT, one low-pT trigger
 Reappearance of the away-side jet
 “Mach cone era”: Double-hump 

structure taken as hint of additional
(later studies showed the flow origin)

The picture can't be displayed. 3<pT
trig<4 GeV/c        1.3<pT

assoc<1.8

Full correlation structure described by 
Fourier Coefficients v1,v2, v3,v4,v5

*

v2v3

Signature Results: Disappearance

50



Jet-medium Interactions

51

 Jet RAA:
 Inclusion of the jet-induced medium 

flow decreases suppression
 The effect is small for small cone 

sizes
 Detailed studies of R-dependence 

essential for discriminating models 

PRC95 4 (2017) 044909 Full jet evolution jet in QGP with hydrodynamic medium response

 Jet Shapes:
 Soft shower thermalization  –

more collimated hard core
 Medium-induced radiation –

broader jet shape
 Inclusion of the jet-induced 

medium flow – critical at large r



Jet Angularity and Dispersion

 Modification of internal jet structure:
 Shift towards lower girth and higher dispersion values
 Higher energy loss for gluon jets? 52

JHEP 10 (2018) 139 

Monte Carlo

● q
o g

● q
o g

PbPb @ 2.76 TeV
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