results on quark flavor dependence of flow in Au+Au collisions

Takashi HACHIYA for the PHENIX collaboration
Nara Women’s University & RIKEN BNL Research Center hachiya@cc.nara-wu.ac.jp

Introduction

Heavy quarks (charms and bottoms) are important probes of Quark-Gluon-Plasma:
- They are mainly produced in the initial hard scattering.
- Heavy quarks propagate through QGP
- Heavy quark flow is sensitive to diffusion(D) of QGP
- J/ψ in QGP
- cc pair dissociated by color Debye screening
- May flow by recombination

Question: What mechanism does generate heavy quark flow?

Experimental Setup & Methods

Silicon Vertex Detectors

Charm and bottom separation
1. Measure DCAT of electrons
2. Determine BG (π, η, ω, γ
3. Bayesian unfolding to extract B/D hadron based on HF electron DCAT and invariant yields.

See PRC 93, 034904 in detail

Summary

- PHENIX measured charm and bottom electron v_2 and J/ψ v_2 in Au + Au collisions at $\sqrt{s_{NN}}$=200 GeV
- A finite charm electron v_2 with 3.5σ
- A hint of bottom electron v_2 with 1.1σ
- $v_2(b \rightarrow e) < v_2(c \rightarrow e)$ with 0.6σ
- A finite charm electron v_2 and a hint of positive J/ψ v_2.
- The better description of the model suggests that charms are dragged by QGP and hadronized by coalescence.
- Model with coalescence describes data better than that w/o coalescence
- Charms dragged by QGP and hadronized by coalescence
- A hint of positive J/ψ v_2, with 1.1σ
- J/ψ $v_2 < v_2(c \rightarrow e)$ with 0.7σ suggests the same mechanism above
- Need more statistics to distinguish the models

- PHENIX measured charm and bottom electron v_2 and J/ψ v_2 in Au + Au collisions at $\sqrt{s_{NN}}$=200 GeV
- A finite charm electron v_2 and a hint of positive bottom electron and J/ψ v_2.
- The better description of the model suggests that charms are dragged by QGP and hadronized by coalescence.
- Final results from available Au+Au date will provide more definitive measurement of heavy flavor v_2 and R_{AA}