

BIS 1.23 Backup solution for BIS optical loops

Raffaello Secondo

C. Martin, I. Romera, J. Uythoven - TE-MPE-MI

15th November 2018

Outline

- Upgrade of optical transceivers: CIBO vs CIBSFP
- Setup of the BIS-SFP test loop
- Data Analysis Results 2017-2018 of BIS-SFP
- Conclusions

Current optical Transceivers

Limitations

- Low power margin:
 - Low typical output power: -19 dBm (~13 μW)
 - Low typical sensitivity: -28 dBm (~1.6 μW)
 - LHC fibers attenuation: up to 6 dB.
- Temperature drift -0.16 dB/°C
- No monitoring of transceiver and link status (except for glitches)
- Custom built

CIBO Daughter board

ELED transceiver

SFP optical Transceivers

Small Form-factor Pluggable (SFP)

MRV SFP-GD-LX

Raffaello Secondo

Advantages

- High power margin:
 - High output power: up to -3 dBm (~500 μW)
 - Good sensitivity: -20 dBm (~10 μW)
- Low gain drift: Internal compensation
- Off-the-shelf industry-standard transceivers
- Hot plug
- Monitoring functions over I2C:
 - RX Power
 - TX Power
 - Temperature
 - Etc...

BIS 1.23 – Upgrade of Optical Transceivers

- BOTH SFP and CIBO do not work properly with DC values → DC level = Ringing
 - Introduced a FALSE frequency of 920 KHz for the SFP = No ringing -> clean signal.
 BEAM PERMIT: True/False/Undefined

CIBM BIS-OP vs CIBM BIS-SFP

Current Operational BIS (BIS-OP)

TSU-SFP IPOC Viewer

Monitoring Tools

BIS-SFP GUI

GOALS of the Data Analysis

- NO missed dumps
 Consistency of time delay between
 (BIS.OP BIS.SFP) @ BeamPermit T→F for each dump
 Beam Permit Propagation Delay from first opening BIC
 - until the TSU
- NO spurious dumps: Analysis of all Beam Permit Transitions.
- SFP delay is affected by:

BIS-OP Local Permit \rightarrow 1.7µs - 2µs

Detection window of both BIC → 300ns - 3.41us

Phase of the Beam Permit Signal → 0 ns − 100 ns

Difference in the length of optical fibres $\rightarrow \pm 1 \mu s$

Error introduced by data logging (before Aug 2018) $\rightarrow \pm 2 \mu s$

Expected Range of Time Delay

(BIS.OP – BIS.SFP) @ BeamPermit $T \rightarrow F \approx -8.5 \mu s$ to 4.8 μs

Case Example: Beam Permit Timestamp @ True → False

Analysis of Missed Dumps - I

- 19 July 2017 to 28 October 2018
- \rightarrow 1 year and 101 days
- **1832** dump events (**Beam 1**) x 2 channels A and B
- ~32000 Beam Permit True → False transitions considering all BICs.
- Data retrieved using NXCALS
 - Faster data recovery compared to CALS.
 - 1 µs resolution

Analysis of Missed Dumps - II

- **Mean Delay** = 0.363 μs
- $1\sigma = 2.85 \,\mu s$ (The detection window is 3.2 μs)

Analysis of Missed Dumps - III

Other events which required a deeper investigation:

- 4 events where data is not present in NXCALS, but it is accessed via the BIS SFP GUI, (CALS).
- 14 events with large time delays, all understood (during TS2 2017).
- 2 events due to CIBG behaviour.
- 19 events where data is missing for the TSU:
 - In these cases the TSU was **not correctly armed** (**16 events** occur in the first week of Sept. 2018 when the arming sequencer experienced an error).
 - TSU arming state added to logging as of Oct 2018.
- 1 event with a TSU logging issue → understood.
- 3 events to be still investigated.

Beam Permit Propagation up to the TSU - A

TSU Data as of23 July 2018

■ ~275 dumps

Beam Permit Propagation up to the TSU - B

Power Transmitted

- 17x 2 channels A and B on CIBM-SFP
- TX power stable at ~-6 dB

Received Power

Conclusions

- **No missed dumps** on the SFP loop were observed. In 19 cases the TSU-SFP was not armed and data is missing (in these cases the CIBDS always triggered), analysis to be completed.
- Data Analysis still ongoing, to be completed for 2018, including analysis of spurious dumps.
- Reliability Demonstration Test run to investigate BIS-SFP reliability with a given confidence interval (M. Blumenschein). To achieve 0 failures of the kind "missed dump" over 1000 LHC years with 90% Confidence Level → at least 4000 more dumps are required.
- Values of Beam Permit delay at each transition True to False between the two loops (OP- SFP) loops are consistent with the expected time range values.
- Transmitted and Received power are stable within the expected range. The SFP built-in diagnostic can improve availability by early recognition of faults.
- SFP transceivers are a good candidate for BIS v2 signal transmission via fiber optics.

