VME bus support plans in BE-CO

Javier Serrano with help and materials from Adam Wujek and Tristan Gingold

BIS 2v0 workshop, 15 November 2018

VME specification

- Developed in early 80's for Motorola 68k
 - The used standard is from late 90's
- Modular electronics
- Typically 1 master, many slaves
- Various transmission modes theoretical up to 320MB/s

(see later for practical numbers).

- Single access
- Block transfer
- Interrupts

VME SBC Card

MEN A20

(not sold by MEN any more)

- Intel Core 2 Duo L7400 (1.5GHz)
- 1GB RAM
- Serial console
- 1GbE
- VME bridge based on TSI148
- Running Linux
- Optional 2x PMC slots
- Storage

MEN A25

MEN A25

- Intel(R) Pentium(R) CPU D1519 @ 1.50GHz
 - 4 cores, hyper threaded
- 8GB of RAM
- Serial console
- 1GbE
- PMC/XMC slot (only one)
- VME bridge based on FPGA
- 2x USB 3.0 (requires CentOS 7)
- Running Linux (SLC6 and CentOS 7, no SLC 5)
- No lemo reset connector on the front panel

PCIe to VME bridge

- Open Source HDL implementation
- Intel Cyclone IV and can be ported to any other FPGA
- Solves PCIe-to-VME bridging problem
 - till the end of VME lifetime
 - ... for us and all other institutes (GSI, DESY)
- Uses ~30% of FPGA logic elements

More features can be added if needed (e.g. 2eSST, 2eVME)

SVEC and VME64x HDL core

See also the Cheby project: https://gitlab.cern.ch/cohtdrivers/cheby/wikis/home

General Machine Timing Receiver

CTRV v5

Upcoming call for tender

- ELMA contract coming to an end
- Almost all ELMA stock committed for LS2
- New call for tender:
 - To be started now
 - Aiming at Finance Committee of end 2019
 - Hopefully prototypes mid-2020
- Come and see us early enough to discuss specific items like:
 - Redundant power supplies
 - Remote monitoring
 - Size variants and number of slots in each variant
 - Dimensions and mechanical details of Rear Transition Modules

10

Summary

- A25 new CPU board to replace A20
- Open source implementation of VME bridge will reduce the risk of using VME in the future
- No plans to phase out VME before end of LHC operation. Support includes:
 - Crates
 - CPU boards
 - Slave reference designs. Currently:
 - SVEC board: https://www.ohwr.org/projects/svec/wiki
 - VME64x HDL core: https://www.ohwr.org/projects/vme64x-core/wiki
 - Timing receiver
- Upcoming call for tender for VME64x crates: get in touch with BE-CO to make sure your requirements are taken into account.

Reserve slide

12

BE/CO FEC Support for Accelerator Control – Roadmap

* : Platform Capability

BE/CO

TIME LINE FULL PLATFORM AVAILABILITY	2018 < LS2> 2019		2020 < 2023	RUN 3	>
APPLICATION - CONSTRAINTS	VME	IPCs	VME	MTCA.4	IPCs
Digital feedback systems	*		*	* 🗸	
Ultra-low jitter timing				* 🗸	
High-end signal acquisition	*	*	*	* 🗸	* 🗸
Multi-gigabit links between boards				* 🗸	
Simple digital I/O	*	*	* 🗸	*	* 🗸
Low to mid-range signal acquisition	*	*	* 🗸	*	* 🗸
MIL-1553, WorldFIP		*			* 🗸
High Availability - Module Hot swap				* 🗸	
High Power Dissipation / slot	*		* 🗸	* 🗸	