ADT and ObsBox

M. Söderén for the ADT team

ADT: An executive summary...

Design specification in 2006:

1/31/2019

M. Söderén: ADT and ObsBox 9th LHC Operations Evian Workshop

ADT timeline

- 2011
 - Injection and abort gap cleaning
 - Batch selective transverse emittance blow-up
 - Start retrieving bunch by bunch data from damper signal processing system
- 2012
 - Cleaning and blow-up used in regular operation
 - Introduction of "standard bandwidth" and "extended bandwidth" operation
 - Gain modulation within a turn introduction of the witness region
 - A single bunch within a 25ns train blow-up and excitation demonstrated for the first time!

1/31/2019

M. Söderén: ADT and ObsBox 9th LHC Operations Evian Workshop

ADT timeline

- LS1 2013-2014:
 - Replacement of all pickup cables (tunnel to SR4), introduction of new pickups (Q8, Q10)
 - New, more powerful signal processing hardware
 - Decoupled main feedback and witness bunches
 - A dedicated cleaning channel
 - A dedicated excitation channel

ADT timeline

- 2015:
 - Introduction of ObsBox system (in the transverse plane known as "ADTObsBox")
- 2016:
 - Bunch by bunch damping time and tune at injection
 - Real time instability detection, transverse activity monitor
- 2017:
 - Linear coupling measurement,
 - Long time bbb data storage at ADTObsBox data servers
 - more advanced excitation modes ADTACDipole
- 2018 (November):
 - On demand bunch by bunch tune measurement prototype
 - Finally!!! 4 pickups!
 - ADT used as a controlled source of complex machine impedance, ADT with larger tune spread acceptance
 - Stable operations with few faults

3 Bunch Excitation in B2V

ADT in MDs 2017-2018

- 4506: Aperture measurements with AC dipole
- 4147: 50Hz harmonics perturbation
- 4145: Studies of Landau damping with an antidamper
- 4143: Noise studies with new ADT pickup electronics
- 4063: New ADT signal processing for large tune spread acceptance
- 3318: Impedance Contribution of Secondary and Tertiary Collimators
- 3310: Complex tune shift as a function of the intensity for single bunches at top energy
- 3291: Emittance growth in collision with optimized ADT settings
- 3289: Determination of the optimal ADT gain for beam stability at flat top
- 3288: Instability latency with controlled noise
- 3283: Active halo control using colored noise excitation
- 3246: 16L2 UFO dynamics investigation
- 3206: Dump with ADT crabbed beam
- 2901: Asymmetric collimator settings in IR7
- 2193: Impedance measurements of TCPSM collimator

ADT for ABP 2017-2018

- 4.6 TB of data stored since late 2017
 - 336 GB: Every injection, all bunches, 4k turns
 - 474 GB: Post mortem data, all bunches, 65k turns
 - 3700 GB: Instability data, all bunches, 65k turns
 - 72 GB: Other data (e.g. dedicated MDs)
- Since fill 6030 stored to a dedicated server (unlimited storage time) with backup to CASTOR
- ADTObsBox[™] data used for: Injection drift observation, Post-mortem analysis, Instability cause analysis, MDs, Generating cool animated plots for meetings and papers
- On top there is 1264 variables logged in TIMBER

Performance and status monitoring

Currently available diagnostics tools in the CCC

*					TRANS	VERSE DAMPER CONTROL		- ×	
💽 🔻 RBA: no	token								
					TRANSVE	RSE DAMPER CO	NTROL		
ADT NAME	Kicker/Ampli	AMPLIFIER	CONTROL	STATUS	MODE	DETAILED STATUS	DAMPING	LOW LEVEL DETAIL STATUS	
ModuleH1B1 (DSPU H M2B1)	H3.B1/ #1	ONLINE	REMOTE	OK	RF ON	Reset INTLK	ACTIVE	LoopA 0 dB LoopB -0.2 dB AbGap BlowUp	
	H4.B1/ #2	ONLINE	REMOTE	OK	RF ON			Loop C - 29.8 dB Loop D - 9.4 dB InjGap	
ModuleH2R1	H1.B1/#3	ONLINE	REMOTE	OK	RF ON	Reset INTLK	ACTIVE	DOD 10 LOOPB - 0.2 dB AbGap BlowUp	
(DSPU H M1B1)	H2.B1/#4	ONLINE	REMOTE	ОК	RF ON			LoopC - 29.8 dB Loops 2.4 dB IniGap	
	V1.B1/#5	ONLINE	REMOTE	OK	RF ON		ACTIVE		IS ALL SWITCHED ON 7
ModuleV1B1	V2 B1/ #6	ONLINE	REMOTE	OK	REON	Reset INTLK			
	V3 R1 / #7	ONLINE	REMOTE	OK	REON				
ModuleV2B1	V/4 D1 / #9	ONUME	PEMOTE	OK	PE ON	Reset INTLK	ACTIVE	LoopA 0 dB LoopB -0.6 dB AbGap Blowop	
	U2 P3/ #0	ONUME	PEMOTE	OK	PE ON			LoopC 0 dB LoopD -9.8 dB InjGap	
(DSPU H M2B2)	113.62/ #10	B2/ #9 ONLINE REMOTE OK RFON Reset INTLK		Reset INTLK ACTIVE		LoopA U dB LoopB U dB ABGap BlowUp			
· · ·	H4.62/ #10	ONLINE	DEMOTE	OK	RF ON			LoopC - 27.8 dB LoopD - 7.5 dB InjGap	
ModuleH2B2 (DSPU H M1B2)	H1.62/ #11	UNLINE	REMUTE	UK	RF ON	Reset INTLK	ACTIVE	LoopA 0 dB LoopB 0 dB AbGap BlowUp	8 dreen: ves it is switched on
	H2.B2/ #12	ONLINE	REMOTE	UK	REON			LoopC - 27.8 dB LoopD - 7.5 dB	
ModuleV1B2	V1.B2/ #13	ONLINE	REMOTE	OK	RFON	Reset INTLK	ACTIVE	LoopA 0 dB LoopB dB AbGap BlowUp	
	V2.B2/ #14	ONLINE	REMOTE	OK	RFON			LoopC - 2.7 dB CoopD - 14.5 dB InjGap	
ModuleV2B2	V3.B2/ #15	ONLINE	REMOTE	ОК	RF ON	Reset INTLK	ACTIVE	apA 0 dB LoopB -5.2 dB AbGap BlowUp	
	V4.B2/ #16	ONLINE	REMOTE	OK	RF ON			LoopC - 2.7 dB LoopD - 14.5 dB InjGap	
RE	SET	OFF		LEVEL1	LEVEL2	RF ON		SEND START DAMPER EVENT SEND STOP DAMPER EVENT	
	INJECTION CLEANING ABORT GAP CLEANING							ABORT GAP CLEANING	
	B1 IDLE B2 IDLE B2 IDLE							B1 IDLE B2 IDLE	
- No E	No Exception to display								
								7	

Performance and status monitoring

Currently available diagnostics tools in the CCC

A bonus: Bunch by bunch tune and damping time The tune value is already available (and accurate) after 5 turns only!

Performance and status monitoring

• A new proposal came from the operations team:

"Can you make an application, which will tell in a human understandable form, what the damper is doing and how is it set up?"

• A good idea, we can prepare something like:

ADT Horizontal Beam 1:

Set for pilot intensity <1x10¹⁰ p/bunch Standard bandwidth, Damping time 50 turns Cleaning enabled, Abort gap, Idle Blow-up enabled, attention: "strong mode"

• Please tell us what would you like to see...

Parameter space for Run III

• What are we getting ready for (based on ABP input):

Parameter	Value	Note
Optics	ATS	Quite flexible as long reasonably high β values around point 4
Intensity per bunch	1.8x10 ¹¹ p	Anything from 5×10^9 to 1×10^{12} with a dynamic range of ~10 dB
Damping time	50 turns	Single bunch within a train, with both standard and extended bandwidth
Q nominal	~0.27-0.32	Close to 1/2 integer possible with a dedicated commissioning effort
Q spread acceptance	±0.025	For 50% increase in damping time
Measurement noise floor	< 0.9 µm _{RMS}	Foreseen improvement by a factor 2-4 wrt. Run II

- ADT performance after LS2 is expected to be the similar as during Run II (with some upgrades and improvements)
- Any specific new requirements have to be communicated NOW!

Changes in LS2

- A lot of work ahead, mostly not visible from the CCC
 - Power system new anode resistors
 - Thorough LLRF firmware clean up, FESA clean up
 - Better expert diagnostics
 - Beam position module upgrade →
- What will be visible from CCC
 - A complete rebuild of the high level controls
 - LSA setting management, parameters calculated from optics
 - Sequences
 - New user interfaces (CCC displays and Inspector panels)
- A new generation ObsBox (Project Ö)

- The system has been a great achievement but...
- The current machines are obsolete and impossible to buy anymore
- The software is the very first feasibility study version – many "due to historical reasons" "features"
- Gathered 4 years of experience hov to do things...

1/31/2019

• A new generation with ambitious specs is coming...

0x00000de3 0x0001c5bc 0x00000de4 0x00000de5 0x00000de6 0x00000de7 0x0001c5bc 0x00000de8 0x00000de9 0x00000de9 0x00000de9 0x00000de9 0x00000de9 0x00000de9 0x000000de9 0x000000de9 0x000000de9 0x000000000 0x000000000 0x0000150bc 0x000150bc 0x000150bc

- New powerful servers to handle the high demand for the data and real time analysis
- New acquisition cards (one card replaces 10 SPEC-cards and supports 2.5Gb/s per link)
- Rewrite ObsBox FESA class
- Dedicated fibers to our NFS server in the CCR
- Lower latency from source to analysis
- Proper DIAMON diagnostics
- Provide a platform for simpler online analysis for ABP (Python, C++)

from RBOX import RBOXClient

def calculation(data):
 print(data.getData())

client = RBOXClient("python_test_instance")
client.addSubscription(["ObsBox.LHC.ADT.B2H.Q7"],calculation)

client.start()

• A real "Real time" bunch by bunch tune and transverse activity monitoring [1]. *Any ideas for fixed displays?*

- Introduction of a full machine, bunch by bunch, turn by turn data buffer for the past 8 hours (36 TB total)
- Local storage, user can retrieve any "slice" (i.e. 4 TB/hour, 77 GB/min, 1.3 GB/s...)
- Other possible applications:
 - Finalize the real time, passive, bunch by bunch tune measurement from the ADT pickup data
 - Finalize the on demand Tune measurement system (with excitation)
 - Automated high precision tune extraction with excitation and data from all pickups (used in MDs)
 - Post mortem data analysis immediately after dump?

On demand b-b-b tune measurement by ADT (with active excitation)

Set-up and trigger

.	Launcher	Load	Watch
Extraction.HB1 ALL FindingStrategy	ADTTuneExtra Measurement	tion.HB1 <mark>A</mark>	LL
Property Value (12	b)- Tue Jun 05 12:3	9:08 CEST 2	2018
🎄 📃 bunches	37,39,44		
🏦 📃 cycleName			
🏦 🔲 precision	low		
	Sot up		
Viewers All -viewers-	Global tab	→ 2	. Iri(

• The prototype FESA class is running, it has to be made a proper operational tool

First train of colliding bunches

First train of colliding bunches after -0.003 Q trim

Index	
[][82]	0.0
[][83]	0.0
[][84]	0.30666077
[][85]	0.0
[][86]	0.0
[][87]	0.0
[][88]	0.30954924
[][89]	0.30853128
[][90]	0.0
3. Co	llect data
[][92]	0.0
[][93]	0.0
[][94]	0.0
[][95]	0.0
[][96]	0.0
[][97]	0.3077234
[][98]	0.30847853
[][99]	0.3079932
[][100]	0.31022993
[][101]	0.0

	Index	
	[][82]	0.0
	[][83]	0.0
	[][84]	0.30430645
	[][85]	0.0
	[][86]	0.0
	[][87]	0.0
	[][88]	0.30624196
	[][89]	0.30520934
	[][90]	0.0
	[][91]	0.0
	[][92]	0.0
	[][93]	0.0
	[][94]	0.0
	[][95]	0.0
	[][96]	0.0
	[][97]	0.3062962
	[][98]	0.30579346
	[][99]	0.30344343
	[][100]	0.3030966
:	[][101]	0.0

ADT re-commissioning strategy

- New, never before operated beam position modules
- A major upgrade of the high level control
- New way the functions will be generated
- New applications and user interfaces
- After LS2, the ADT will be considered "as new" therefore a much longer commissioning time will be needed
 - A typical time required in Run II: 2-3 shifts
 - A 10dB increase, plus a couple of ramps is a reasonable estimate

Thank you for your attention

1/31/2019

M. Söderén: ADT and ObsBox 9th LHC Operations Evian Workshop

- [1] "Kotzian algorithm"
- Kotzian, Gerd : Transverse Feedback Parameter
 Extraction from Excitation Data
- <u>http://cds.cern.ch/record/2289132/files/tupik094.pdf</u>

