

LHC machine configurations in Run 2 (with focus on collimation and β*)

R. Bruce

with input from N. Fuster Martinez, P. Hermes, A. Mereghetti, D. Mirarchi, S. Redaelli, B. Salvachua

CERN

Outline

- Recap of Run 2 machine configuration evolution
- Summary of Run 2 aperture measurements
- Evolution year by year, and reasoning behind changes for
 - Collimator settings
 - β*
- Conclusions

Main run 2 configuration changes

Evolution of key parameters

- Starting from a careful approach in 2015, ramping up to excellent performance
 - Regularly operating at twice the LHC design luminosity
- Steady decrease of β* over the years
 - Key to increased peak performance with total intensity almost flat in the last years

Comparison: 2018 vs LHC design

- Some keys to good peak performance:
 - Small emittance
 - See talks H.
 Bartosik, S.
 Papadopoulou
 - Small β* at collision point
 - Focus of this talk

Parameter	2018	LHC Design
Energy [TeV]	6.5	7.0
No. of bunches	2556	2808
Max. stored energy per beam (MJ)	312	362
β* IR1/5 [cm]	30→25	55
Half crossing angle IR1/5 [µrad]	160→130	142.5
Normalized beam-beam separation	10.6→7.9	9.4
p/bunch (typical value) [10 ¹¹]	1.1	1.15
Typical normalized emittance [µm]	~1.9	3.75
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.1	1.0

Machine configuration aspects

Several aspects of machine configuration covered in other talks

- Beam characteristics: beam types,
 bunch intensity, emittance
- Optics
- RF settings
- Chromaticity, octupoles
- Heavy-ion configurations
- β*
- Collimator settings

- → H. Bartosik,
- S. Papadopoulou
- → T. Persson
- → H. Timko
- → X. Buffat
- → J. Jowett

- This talk

Collimator settings and aperture

- Collimation hierarchy sets lower limit for protection of aperture
- All elements (e.g. triplet) must have larger apertures (in σ)
- Beam size increases in triplet when β * is squeezed
- Smaller β* usually requires larger crossing angle

=> smaller normalized aperture in σ to be protected at smaller β *

R. Bruce, 2016.12.15

Ways to push aperture limit

- Tighter collimators => protect smaller normalized aperture
- Smaller normalized beam-beam separation => smaller crossing angle and more aperture at any given $\beta*$

Strategy in Run 2

- Better knowledge of the aperture allows a smaller margin on the aperture
 - Used to squeeze in Run I, now aperture "goldmine" is depleted

Aperture measurements

- Crucial to know aperture well for correct determination of machine settings that ensure protection
- Detailed aperture measurements part of standard commissioning
 - Limited precision due to variations in closed orbit and machine movements
 - Some minor differences expected between the years
- Measured aperture used to verify calculation parameters for predicting the aperture in new, untested configurations
 - MAD-X aperture module accurate 2D calculation, but need to tune many input parameters for various sources of imperfections
 - "Scaling" of aperture fast and straight-forward method, but risk of errors if aperture bottleneck is purely horizontal or vertical

Collision apertures in Run 2

	B1H	B1V	B2H	B2V
2015, 80 cm, -145 μrad	18.2 (D1/Q3R5)	15.7 (D1/Q3L1)	16.2 (D1/Q3R1)	15.7 (D1/Q3R1)
Predicted 2015		16.0		
2016, 40 cm, -185 μrad	10.6 (D1/Q3R5)	9.9 (D1/Q3L1)	11.5 (D1/Q3R1)	10.4 (D1/Q3R1)
Predicted 2016		10.2		
2017, 40 cm, +185 μrad	10.9 (D1/Q3R5)	12.0 (D1/Q3L1)	12.9 (Q2R5)	11.4 (D1/Q3R1)
2017, 40 cm, +150 μrad	11.5 (D1/Q3R5)	12.4 (D1/Q3L1)	14.0 (Q2R5)	12.0(D1/Q3L1)
Predicted 2017a		11.6		
2017, 30 cm, +150 μrad	10.6 (D1/Q3L1 & D1/Q3R5	11.1 (Q2R5 & Q3/D1 L1)	10.9 (D1/Q3R1)	10.5 (D1/Q3R1)
Predicted 2017b		10.0		
2018, 30 cm, +160 μrad	10.5 (D1/Q3L1)	10.5 (D1/Q3L1)	10.0 (D1/Q3R1)	10.5 (D1/Q3R1)
Predicted 2018a		9.6		
2018, 25 cm, +145 μrad	9.2 (D1/Q3L1)	9.2 (D1/Q3L1)	>12	10.5 (D1/Q3R1)
Predicted 2018b		9.4		

All in σ for 3.5 μ m emittance

All apertures predicted within 0.5σ

Crossing plane aperture at top energy

- Calculating aperture as function of β * using scaling for fixed BB-separation
- Aperture measurements with beam largely consistent

Aperture scaled from worst measurement every year. Assuming varying crossing angle – 9.2 σ beam-beam separation for ε=2.5 μm

Lessons learned on aperture

- Asymmetry in aperture between IR1 crossing angle signs
 - Gained about 2 σ in the crossing plane of IR1 with positive crossing angle
 - limitation moves to other plane. Gain on limit about 1 σ
 - Crossing changed to distribute radiation in triplet. Change back to negative polarity in Run 3?
 - so far produced with positive polarity: 115 fb^{-1} at 6.5 TeV, with negative polarity: 45 fb^{-1} at 6.5 TeV + 30 fb 1 at 4 TeV
- CMS IP shift bump predicted to cause significant degradation of vertical aperture in MAD-X calculations
 - Not observed in measurements shadowed by IR1 crossing plane
 - Global LHC measurements: No effect seen in tests down to -2 mm at β *=40 cm
 - Operated with CMS bump at -1.8 mm in 2018

Injection aperture

- Injection aperture measured in the commissioning of every year
- See some variations and improvement over the years, in particular B1H
- Some variations of the bottleneck locations see backup
 - Probably several bottlenecks at similar apertures

Outline

- Recap of Run 2 machine configuration evolution
- Summary of Run 2 aperture measurements

- Evolution year by year, and reasoning behind changes for
 - Collimator settings
 - β*
- Conclusions

CERN

2015

- First year after LS1 concerns for losses, stability and protection of aperture
 - Higher beam energy (6.5 TeV vs 4 TeV) and lower quench limit
 - Shorter 25 ns bunch spacing
 - Loss spikes and instabilities

Strategy

- Put focus on feasibility, stability and ease of commissioning. Allow comfortable margins for operation and avoid introducing too many untested features at once
- Main priority: Get LHC running 25 ns at 6.5 TeV
- Performance should not be main focus, but we should also not be overly pessimistic
- Prepare for production and higher performance in 2016

2015

- Collimator settings
 - Kept IR7 settings from 2012 in mm
 - Well-proven long-term stability and cleaning
 - Cleaning predicted to be satisfactory at 6.5 TeV
- Start carefully with comfortable margins on aperture, orbit, optics, beam-beam
- Protection of aperture: added 2 σ extra margins on top of assumption as in Run 1 [see PRSTAB 18, 061001 (2015)]
 - Risk of damage to TCTs and triplet during asynch dump driving choice of settings
- Started with conservative value of β *=80 cm and 11 σ beam-beam separation (150 μ rad)

Development during 2015

- Started thinking of how to push performance
- MDs on tighter collimation hierarchy
 - Found that impedance and stability of cleaning hierarchy were acceptable when moving in TCSGs to 2 σ retraction from TCP
 - Found a hierarchy breakage at 1 σ retraction
- MDs by beam-beam team showed possibility of reduced beam-beam separation
 - 10 σ for 3.75 μm

A. Mereghetti et al.

Reducing TCDQ-TCT margin

- Relatively large margin of 4.6 σ taken between TCDQ and TCT in collimation hierarchy in 2015
 - Ensure that the TCTs and the triplet aperture just behind never risk to be damaged during an asynchronous beam dump

- Possible to reduce margin by demanding that TCTs / triplets should be close to the minimum of the oscillating miskicked beam
 - Triggered design of new optics for 2016 (R. de Maria et al.), demanding MKD-TCT phase stays below 30 deg
- MDs on aperture measurements at smaller β*

2016 configuration

- Reduced margins in collimation hierarchy, in particular reducing TCDQ-TCT margin to 0.9 σ
 - Could maybe have been reduced even more, but didn't do it due to fear of causing higher experimental background
 - Started developing new software interlocks on phase (power converter interlock) and BPMs in IR6 and at TCTs to ensure operation within acceptable interval
 - Using built-in BPMs at collimators
- Could go to β *=40 cm and 10 σ beam-beam separation (185 μ rad)
 - First time that LHC operated below the design value β *=55 cm
 - Production year start pushing performance

Developments in 2016

- Studies by beam-beam team: Reduced crossing from 185 urad to 140 urad
 - 9.3 σ for BCMS emittance 2.5 μm
 - Gave additional aperture margin further reduction of β*?
- Campaign of MDs in view of reduced β * in 2017
 - Tighter TCP setting by 0.5 σ
 - Tighter collimation hierarchy TCSG retraction of 1.5 σ acceptable
 - Tighter TCT setting did not show effect on experimental background
 - Aperture measurements
- Development of new ATS optics with matched MKD-TCT phase (S. Fartoukh)

- Implemented tighter IR7 settings
- Started close to 2016 configuration:
 β*=40 cm, but with new ATS optics
 - Optics commissioned down to 30 cm to prepare future reduction
 - Asymmetric TCDQ setting required
- Pushed after TS2 to β*=30 cm, based on measurements and simulations.
 - Kept same crossing angle of 150 µrad
 decrease in normalized beam beam separation
 - Helped in recovering performance during the "16L2 period"

2018

- No large margins left to gain on collimators already pretty tight
 - Primary half gaps of less than 1 mm
 - Still some room to move in tertiaries and allow smaller aperture

- Largely kept 2017 collimator settings
 - Needed to introduce tilt on TCSG to avoid hierarchy breakage even at 1.5 σ retraction
- Potential room to reach 27.5 cm still started at 30 cm, but with additional β*-leveling down to 25 cm

Parameter space for Run 2 operation

- Explored a wide parameter space in Run 2
- Leveling pushes
 configuration later in
 fill when intensity dependent
 constraints are
 relaxed
- Have gone a long way since LHC design!

Conclusions

- Explored a large parameter space for the Run 2 machine configurations
- Pushed towards higher performance every year
 - Relied on good knowledge of the aperture
 - Aperture measurements part of standard commissioning
- Collimators continuously tightened during Run 2
 - Can now protect aperture that is close to the LHC design value
 - Used MD results to determine the next machine configuration
- Pursued options to improve machine performance while staying safe and not reducing machine availability
- Achieved β* less than half of the LHC design value
 - Reduced β* by more than factor 3 since 2015

Thanks for the attention.

Questions?

Backup

Summary of Run 2 collimator settings

Collimator	2015	2016	2017a	2017b	2018
TCP IR7	5.5	5.5	5.0	5.0	5.0
TCSG IR7	8.0	7.5	6.5	6.5	6.5
TCLA IR7	14.0	11.0	10.0	10.0	10.0
TCP IR3	15.0	15.0	15.0	15.0	15.0
TCSG IR3	18.0	18.0	18.0	18.0	18.0
TCLA IR3	20.0	20.0	20.0	20.0	20.0
TCSP IR6	9.1	8.3	7.3	7.3	7.3
TCDQ IR6	9.1	8.3	7.3	7.3	7.3
TCT IR1/5	13.7	9.0	9.0	8.5	8.5→ 7.8
Aperture 1/5		9.9	9.9	9.5	8.8
β* IR1/5	80 cm	40 cm	40 cm	30 cm	30 cm → 25 cm
TCT IR2	37.0	37.0	37.0	37.0	37.0
TCT IR8	15.0	15.0	15.0	15.0	15.0

Settings in σ with ε =3.5 μ m

Injection apertures in Run 2

	B1H	B1V	B2H	B2V
2015	MBRC.4R8: 11.6	Q6L4: 11.5	Q4L6: 12.5	Q4R6: 12.0
2016	MBRC.4R8: 12.5	Q6L4: 12.0	TCDQM.4L6: 12.5	Q4R6: 12.5
2017	Q6R2: 13.1	Q4L6: 12.2	Q6L8: 13.2	Q4R6: 12.8
2018	Q4R6: 13.3	Q4L6: 12.2	Q4L6 & Q6L8: 13.0	Q4R6: 12.5

2016 beam tests of asynch dump

 MDs: Verified experimentally TCT losses during asynchronous dump tests in different optics

- As expected, do not see dependence on TCT setting at 40 cm
 - TCT still intercepts secondary beam out-scattered in IR6 more spread out → not problematic

R. Bruce, 2016.12.15