Luminosity and Lifetime modeling and optimization

F. Antoniou, I. Efthymiopoulos, S. Fartoukh, G. Iadarola, N. Karastathis, <u>S. Kostoglou</u>, S. Papadopoulou, Y. Papaphilippou, D. Pellegrini, G. Sterbini, G. Trad

Thanks to: G.Arduini, X. Buffat, M. Hostettler

9th LHC Operations Evian Workshop

References:

https://indico.cern.ch/event/578001/contributions/2366376/attachments/1388316/2222614/Evian2016_Lumi_F.Antoniou.pdf https://indico.cern.ch/event/663598/contributions/2782463/attachments/1574684/2595874/Evian2017.pdf https://indico.cern.ch/event/676124/contributions/2767808/attachments/1590667/2517280/LHC_beam_quality_2018_YP_final.pdf https://indico.cern.ch/event/725848/contributions/3003159/attachments/1650011/2638526/004_bunch_by_bunch_losses.pdf https://indico.cern.ch/event/743788/contributions/3072786/attachments/1688146/2715404/006_bbb_losses_squeeze_LBOC_20180717.pdf https://indico.cern.ch/event/732251/contributions/3020444/attachments/1657980/2654947/nkarast_LBOC29052018.pdf https://indico.cern.ch/event/758567/contributions/3145897/attachments/1718629/2773551/lmc_nkarast_19092018.pdf

Motivation

Run I & Run II: Additional lifetime degradation mechanisms, above the Luminosity burn-off losses, have been observed.

The extra losses will be addressed in this presentation

From S. Papadopoulou's talk

Using tools for luminosity monitoring from experimental data (Luminosity model *) and simulations (Dynamic Aperture studies):

Identify sources of additional losses.

Determine beam modes during the cycle which are mostly affected.

Investigate cause of imbalance between
 B1 and B2.

Investigate possibility to mitigate these effects.

* See appendix "Performance follow up tools"

Lifetime B1 < Lifetime B2

 Comparison of 2018 with BCMS 2017: Reduction of lifetime, increase in extra losses for both beams.

* Similar average lifetime between BCMS, BCS, 8b4e in 2017 (see appendix "Summary of Lifetime @ SB 2017")

Dynamic Aperture optimization

- Since 2016: multiparametric DA scans for lifetime optimization.
- DA with Sixtrack over 1e6 turns for different machine configurations.
- Machine parameters for optimization:

Included in DA simulations:

Tune, Intensity, Crossing angle, β*, chromaticity, octupoles, BB effects

Tune scan for 2017

ATS Optics; $\beta^* = 40$ cm; Q'=15; I_{MO}=500 A; $\epsilon = 2.5 \ \mu$ m; I=1.25 10^{11} e; X=150 μ rad; Min DA.

Dynamic Aperture optimization

NOT included in DA simulations:

- Imperfections (effective machine model) & Electron-cloud & Noise
- Introduce additional non-linearities reducing further DA.

Below β* 40 cm during Squeeze, lifetime reduction observed mainly in B1.
 β* in 2017

 Patterns of LR (middle of the trains) and e-cloud (tails of the trains).

- Patterns of LR (middle of the trains) and e-cloud (tails of the trains).
- More pronounced for
 B1 than B2 and the loss patterns increase as β* decreases.
- Separate analysis for bunches affected by e-cloud/LR.

Classes:

- I. NoBB: Pacman
- II. BB: LR
- III. BB-ecloud: LR & e-cloud
- IV. NoBB-ecloud: Pacman with e-cloud

Lifetime drop β* 33 cm to β* 70 cm [%] B1 NoBB 21 BB 72 BB-ecloud 80		-				
70 cm [%] B1 NoBB 21 BB 72 BB-ecloud 80		Lifetime drop β^* 33 cm to β^*				
B1 NoBB 21 BB 72 BB-ecloud 80		70 cm [%]				
BB 72 BB-ecloud 80	B1	NoBB	21			
BB-ecloud 80		BB	72			
		BB-ecloud	80			
NOBB-ecloud 62		NoBB-ecloud	62			
B2 NoBB -7	B2	NoBB	-7			
BB 30		BB	30			
BB-ecloud 76		BB-ecloud	76			
NoBB-ecloud 57		NoBB-ecloud	57			

- Dependence of losses on IP1/5 LR encounters.
- LR effects can be mitigated with tune optimization.

* See appendix "BBLR driven patterns".

- Dependence of losses on IP1/5 LR encounters.
- LR effects can be mitigated with tune optimization..

Min DA, LHC Squeeze, β^* =30cm, N_b=1.2×10¹¹ppb

* See appendix "BBLR driven patterns".

- Dependence of losses on IP1/5 LR encounters.
- LR effects can be mitigated with tune optimization.
- Reduction of loss rate for both beams.
- E-cloud patterns still visible.

* See appendix "BBLR driven patterns".

31/01/2019

CFR

31/01/2019

725

750

700

675

Bunch slots [25 ns]

optimizations (mainly the 1st one) for all classes*, mainly Class **BB & BB-ecloud.**

- No significant improvement from octupole reduction**.

Stable beams

31/01/2019

Effective Cross Section

2017

Effective Cross Section

2017 1. Start of Stable beams 2018

31/01/2019

Losses @ Start of SB

- Reduction of initial lifetime of both beams after TS1, mainly for B2
- Probably correlated with tune optimization during Squeeze

Effective Cross Section

CERN

Losses @ SB during 2018

Losses @ SB during 2018

2018, Constant crossing angle 2018, Crossing angle anti-leveling

β*=30 cm

31/01/2019

Losses @ SB during 2018

DA optimizations in 2018

DA-Lifetime Correlation

- Intensity, chromaticity, octupole current, crossing angle evolution and emittance from the data.
- DA simulations more consistent with B2.
- DA 5 σ ~ 100 h of B2 BO corrected lifetime.*

* See appendix "Correlation of DA with lifetime"

Noise effects

- Noise effects can lead to lifetime degradation by introducing additional resonances.
- eg. Tune modulation (Inner triplet)

Burn-off corrected Lifetime [h]					
fr [Hz]	ΔQ	Lifetime [h]			
Without noise	-	128.552			
50	2e-4	116.6			
150	2e-4	108.482			
300	2e-4	44.866			
600	2e-4	47.953			

Approximations:

- Impact from beam screen, cold bore **not included** in the transfer function.
- Inductance is considered constant for different frequencies.
- Evaluation of the impact from **individual frequencies**, not multiple harmonics.

Inner triplet & 50 Hz: https://indico.cern.ch/event/779650/contributions/3244747/attachments/1770859/2877607/TCC_noise_131218.pdf 50 Hz: https://indico.cern.ch/event/436679/contributions/1085928/attachments/1136594/1627012/LMC05082015_50Hz_04082015.pdf

<u>Squeeze</u>

- Reduction of lifetime below β^* 40cm.
- Bunch-by-bunch losses revealed LR and e-cloud patterns, mostly affecting B1 (e-cloud in the triplet?).
- Tune optimization can mitigated mostly LR losses and improved lifetime.

<u>Squeeze</u>

- Reduction of lifetime below β^* 40cm.
- Bunch-by-bunch losses revealed LR and e-cloud patterns, mostly affecting B1 (e-cloud in the triplet?).
- Tune optimization can mitigated mostly LR losses and improved lifetime.

Stable Beams

- Lifetime of **B1** systematically lower than **B2** during Run II
- Extra losses observed in the first few hours during the whole run II (not yet understood).
- During 2018 additional losses observed induced by crossing angle antileveling and β* levelling, e-cloud related
- E-cloud important mechanism of beam lifetime degradation with BCMS beams (and B1 vs B2 difference).

<u>Squeeze</u>

- Reduction of lifetime below β^* 40cm.
- Bunch-by-bunch losses revealed LR and e-cloud patterns, mostly affecting B1 (e-cloud in the triplet?).
- Tune optimization can mitigated mostly LR losses and improved lifetime.

Stable Beams

- Lifetime of **B1** systematically lower than **B2** during Run II
- Extra losses observed in the first few hours during the whole run II (not yet understood).
- During 2018 additional losses observed induced by crossing angle antileveling and β* levelling, e-cloud related
- E-cloud important mechanism of beam lifetime degradation with BCMS beams (and B1 vs B2 difference).
- DA well correlated with lifetime, but model misses important ingredients (imperfections, noise, e-cloud).

<u>Squeeze</u>

- Reduction of lifetime below β^* 40cm.
- Bunch-by-bunch losses revealed LR and e-cloud patterns, mostly affecting B1 (e-cloud in the triplet?).
- Tune optimization can mitigated mostly LR losses and improved lifetime.

Stable Beams

- Lifetime of **B1** systematically lower than **B2** during Run II
- Extra losses observed in the first few hours during the whole run II (not yet understood).
- During 2018 additional losses observed induced by crossing angle antileveling and β* levelling, e-cloud related
- E-cloud important mechanism of beam lifetime degradation with BCMS beams (and B1 vs B2 difference).
- DA well correlated with lifetime, but model misses important ingredients (imperfections, noise, e-cloud).

Thank you for your attention

Backup slides

31/01/2019

Luminosity evolution

Impact of different degradation mechanisms on the Luminosity of Fill 7334

	Pure model	Extra Losses	Extra emittance blow up	Calculated
Emittance	model	model	data	data
Intensity	model	data	model	data

Performance follow-up tools

- Development of tools for the analysis of the emittance evolution during Run I and then for monitoring the performance in Run II (F. Antoniou & G. ladarola).
- Automated tool for performance follow-up since 2017 based on extracted data from the logging system (Timber Timber) and modeling.
 - https://lhc-lumimod.web.cern.ch/lhc-lumimod/summaryPlots.html

See S. Papadopoulou's talk

- > Allows for a **bunch-by-bunch and fill-by-fill analysis** of:
 - Emittance, Lifetime, Luminosity
 - Comparison with luminosity model (Emittance & Intensity evolution)
- Comparison between different beam and machine configurations during **Run II**:
 - **2015**: β* 80 cm.
 - 2016: transition to BCMS, β* 40 cm.
 - **2017**: BCMS, 8b4e, BCS, separation leveling & anti-leveling, ATS optics, β^* 40/30 cm.
 - **2018:** β* leveling, smoother crossing angle anti-leveling

BBLR driven patterns

• Dependence of the loss rate on the LR encounters in IP1 & IP5

Losses @ telescopic squeeze

- Positive impact of tune optimizations (mainly the 1st one) for all classes, mainly Class LR & LR-ecloud.
- No significant improvement from the octupole reduction.

	200		•	Pacman	÷	LR-ecloud	
	300		•	LR	•	Pacman-ecloud	
ttime [h] 33 cm	200		+	-	,	•	•
B1 Life β* ∷	100		•			•	+
	0		•	•		•	•
[H	400						
ime [3 cm	300	•	•	•		•	+
Lifet β* 3	200		+			•	1
B2	100		•	•		•	•
	0	Start 2018	1 st tune optimizat	2 nd t ion optimi	une zatior	Octupole reduction	Squeeze 2018

	β* 33 cm	All fills [h]	Lifetime change 1st tune optimizat ion [%]	2nd tune optimizati on [%]	Octupole reduction [%]	le [h] cm	400	
	All bunches	32.8	48.8	19.3	-6.2	-ifetim * 33 (200	-
B1	Class 1	203	15.9	35.3	4.3	β β	100	
	Class 2	75.9	129.1	70.2	14.6	B	100	
	Class 3	19.5	40.6	25.1	-5.1			
	Class 4	23.9	3.7	-11.3	-16.5		0	Sta
	All bunches	122.5	188.6	16.2	-2.2			20
B2	Class 1	331.8	6.1	3.2	-0.6			
	Class 2	207	315.4	54.1	-17.1			
	Class 3	69.3	177.7	32.3	-0.003			
	Class 4	135.8	80.8	-15.9	-0.3			

Losses @ Start of SB

 Reduction of initial lifetime of both beams after TS1.

Lifetime [h] @ Start of SB					
	B1	B2			
Class 1	22.75 ± 3.57	20.60 ± 5.18			
Class 2	19.53 ± 3.56	18.94 ± 5.33			
Class 3	14.18 ± 3.57	14.91 ± 6.73			
Class 4	13.63 ± 2.20	15.88 ± 5.48			

Next steps: Online Luminosity model

The goal of an online luminosity model is:

- Promote the maturity and results of the luminosity model
 - > Luminosity \rightleftharpoons emittance
 - Our best knowledge of the machine including all effects that we could describe : IBS, BB, noise, collisions, e-cloud
- Provide information/results in two fronts:
 - **Follow-up**: how different is this fill with respect to previous ones?
 - Follow luminosity/emit between fills (historical data)
 - > **Prediction:** what would be the achieved luminosity of a given fill as injected
 - Follow-up if indeed reached the predicted value.

Initial effective cross section @ SB

Luminosity during anti-leveling

Crossing Angle Anti-Leveling

- Burn-off corrected lifetime as a function of time indicates that there is a reduction of lifetime during crossing angle anti-leveling for B1 Class LR-ecloud & Pacman-ecloud
- Pacman-ecloud is more affected in B1, which indicates that e-cloud is the dominating effect.

Fill 7266: Constant Crossing angle

BO corrected lifetime LR-ecloud & Pacmanecloud

31/01/201

Effective Cross Section

DA optimizations in 2018

DA optimizations in 2018

Before DA optimizations (chroma, octupoles, smoother crossing angle anti-leveling)

After DA optimizations

Correlation of DA with Lifetime

31/01/2019

Correlation of DA with Lifetime: Fill 7334

52

Noise effects

- Noise effects can lead to lifetime degradation by introducing additional resonances.
- 2. 50 Hz harmonics

31/01/2019

Noise effects

- Noise effects can lead to lifetime degradation by introducing additional resonances.
- 2. 50 Hz harmonics (Based on a realistic spectrum)

Burn-off corrected Lifetime [h]				
fr [kHz]	Lifetime [h]			
Without noise	299.52			
0-3	294.749			
3-6	264.078			
6-8	207.802			
0-8.5	182.088			

Approximations:

Transfer function of chain of dipoles not included, localized kicks.

Losses @ SB: BBB patterns

- Increase of losses in the bunches mostly effected by e-cloud during crossing angle antileveling.
- Mainly affecting Classes LR-ecloud & Pacman-ecloud (for B1 Pacman-ecloud is worse)*
- Spikes in losses during the transition from β^* 30 cm to β^* 25 cm.

Crossing Angle Anti-Leveling

- Increased losses due to e-cloud are observed during the crossing angle antilevelling. Not observed with constant crossing angle.
- However, adapting the crossing angle leads up to ~1.4% more integrated luminosity*.

* See appendix "Luminosity during anti-leveling"

Effective Cross Section

From the effective cross section as a function of time:

- Extra losses in the few first hours
- Increase of losses during crossing angle antilevelling*
- Increased losses during
 β* steps
- Longitudinal blow-up induces small spikes in the evolution

