Report from the LHC Run-III Configuration Working Group

- G. Arduini, M. Barnes, H. Bartosik, K. Brodzinski, X. Buffat, F. Cerutti, S. Fartoukh,
- B. Goddard, G. Iadarola, N. Karastathis, S. Le Naour, A. Lechner, J. Maestre Heredia,
- A. Mereghetti, E. Metral, D. Missiaen, N. Mounet, F.X. Nuiri, S. Papadopoulou,
- Y. Papaphilippou, B. Petersen, C. Schwick, G. Rumolo, B. Salvant, M. Solfaroli Camillocci,
- G. Sterbini, H. Timko, R. Tomas Garcia, J. Uythoven, J. Wenninger

9th LHC Operations Evian Workshop 01/02/2019

LHC Run-III Configuration Working Group

LCR3 WG Mandate

Prepare **LHC** operational scenarios for the third exploitation period of the LHC and assess them in terms of performance reach, expected limitations & action plan to overcome them.

The working group reports to the LHC Machine Committee.

Contributors

Collaborative effort between many colleagues from:

**BE-ABP, BE-RF, BE-OP, EN-SMM, EN-STI,

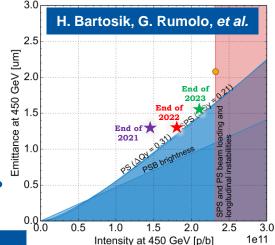
**LPC, TE-ABT, TE-CRG, TE-MPE, TE-MSC

**& many more

**Thank you!

Indico Agendas: https://indico.cern.ch/category/10387/

Deliverables & Equipment Group Constraints


- Very clear forecast from LIU for the commissioning plan:
 - Gradual intensity ramp up over Run-III.

	2021	2022	2023*	Comment
# bunches	Ul	p to 2748 (BC	MS)	
$\epsilon_n [\mu m]$	1.3	1.3	1.3 → 1.55	Intensity Ramp Up
$N_b [10^{11} \text{p}]$	0 →1.4	1.4 →1.8	1.8 → 2.1	Max intensity at the end of each year

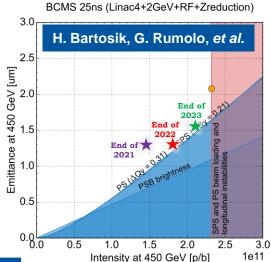
^{*} Not including 2024 when the LHC is in shutdown but the injectors are fully operational.

At the LHC, can we inject, accelerate, collide and safely dump such a beam?

System	1.7e11	1.8e11	Comment
MKI	OK	OK	One new MKI prototype to be installed in 2022/2023 in IR8. 1.8 × 10 ¹¹ ppb should be within reach with 1.3ns → Studies are on-going for 1.2
RF	OK	OK	Klystron power limitation at INJ: 1.8×10^{11} ppb \rightarrow out of reach with Q22, ok for Q20 with >1.2ns in RAMP.
Alignment	NA	NA	Vertical realignment of LSS5 (Q10-Q10) by up to -3 mm
Cryogenics	OK	OK	Total heat load measured at $306W \rightarrow L_{peak} = 2.05 \times 10^{34} \text{Hz/cm}^2$ at 7.0 TeV. Impact of running the triplet at the cryo limit is marginal (<2%) on the cooling capacity of the beam screen in the adjacent arcs.

BCMS 25ns (Linac4+2GeV+RF+Zreduction)

Deliverables & Equipment Group Constraints

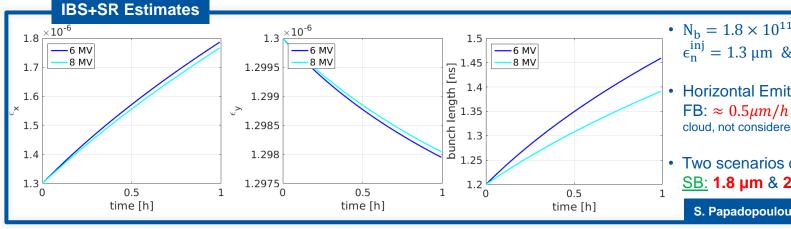

- Very clear forecast from LIU for the commissioning plan:
 - Gradual intensity ramp up over Run-III.

	2021	2022	2023*	Comment
# bunches	Ul	p to 2748 (BC	MS)	
$\epsilon_n [\mu m]$	1.3	1.3	1.3 → 1.55	Intensity Ramp Up
$N_b [10^{11} \text{p}]$	0 →1.4	1.4 →1.8	1.8 → 2.1	Max intensity at the end of each year

^{*} Not including 2024 when the LHC is in shutdown but the injectors are fully operational.

At the LHC, can we inject, accelerate, collide and safely dump such a beam?

System	1.7e11	1.8e11	Comment
TCDQ	OK	OK	For 2.5mm gap and $N_b = 1.7 \times 10^{11}$ ppb safety factor up to 2.5. Studies on-going for other gap values (2.0mm). TCDQ leveling MD successful!
TCDS	OK	5	Already designed for $N_b = 1.7 \times 10^{11}$ ppb, but in plastic deformation already \rightarrow Studies on-going.
TDE	ý	ý	New downstream window installed in LS2. Not sufficient margin for the upstream window → YETS 2021/2022. Material re-characterization needed for the body at 2500°C. Study on-going.
Collimation	OK	OK	No issue on finding suitable settings for Run-III (with the help of partial upgrade in Run-III and thanks to dedicated telescopic optics).



The LHC should be available to accept a max bunch population of $N_b = 1.8 \times 10^{11} ppb$

Especially, after the TDE downstream window upgrade.



When the protons are in the LHC (I)

- $N_b = 1.8 \times 10^{11} \text{ ppb}$, $\epsilon_{\rm n}^{\rm inj} = 1.3 \, \mu {\rm m} \, \& \, \sigma_L = 1.2 \, {\rm ns}$
- Horizontal Emittance Growth @ FB: $\approx 0.5 \mu m/h$ (additional effects, e.g. ecloud, not considered here)
- Two scenarios considered at Start SB: 1.8 µm & 2.5 µm

S. Papadopoulou, Y. Papaphilippou et al.

- BCMS: extra margin than the 25ns standard.
- Almost within the capacity for 1.8×10^{11} ppb.
- Assuming no degradation during LS2!

G. ladarola, M. Solfaroli Camillocci, J. Wenninger et al.

- Required for the 25% missing cryo-cooling capacity.
- 9.2% less collisions at IP1/5 compared to pure BCMS scheme

Baseline: Pure BCMS

5x48 bpi, 2736 collisions in ATLAS/CMS, 2250/2376 in Alice/LHCb

Backup: Mixed BCMS with 8b+4e (56b) inserts

• Operationally viable under the two beam (INTR/NOM) injection scheme, but could require some overhead until fully automatized.

* 25ns 2492b 2484 1949 2131 240bpi 13inj 800ns bs200n run3study

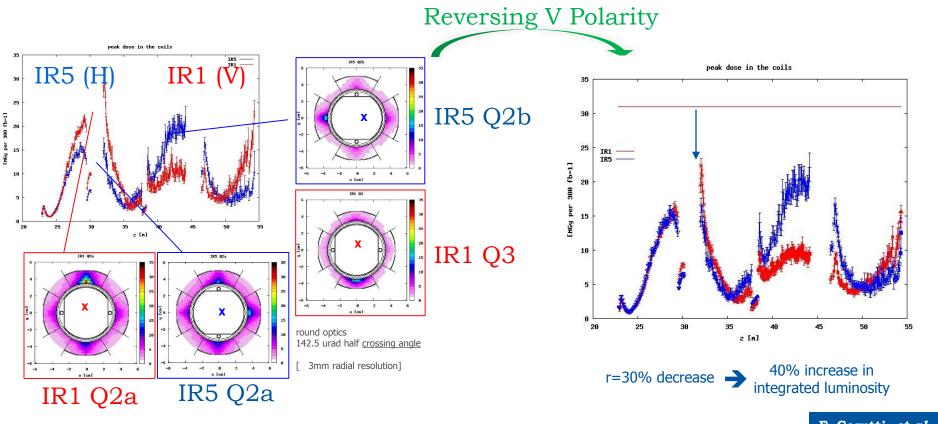
When the protons are in the LHC (II)

Stability Concerns

- Without BBLR there is some stability margin due to the collimator upgrade.
- The operational **polarity** of the octupoles has not been decided yet.
 - The critical point for I_{MO}>0: end of ramp → Stability guaranteed even in the most demanding configuration.
 - The critical point for I_{MO}<0: end of squeeze → can create issues in ADJUST and/or with offset leveling mode → we need ≈300A of octupole current at a tele-index of 2.5 to allow for any long-range separation.
- The telescopic index needs to be applied already in the RAMP to increase the effectiveness of the octupoles → CRDS MD successful!
- The **TMCI threshold** is pushed further away $(4.7 \times 10^{11} \text{ppb})$ compared to Run-II.

X. Buffat, E. Metral, N. Mounet, et al.

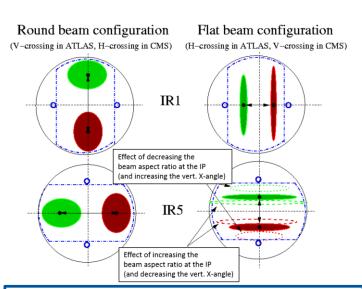
	1e2 posit	ive oct. pola	rity, M=356	64 , damp=	0.03	
Octupole current [A]			- settings - settings - settings - settings - settings - settings - extreme	LHC Runll noM HLLHC relaxed HLLHC relaxed TeleIndex1, x TeleIndex1, y	eindex1, y lo Teleindex1, y lo Teleindex1, y d Teleindex1, x d Teleindex1, y	,
-1 -1	10 –5	Ó	5 Q'	10	15	20

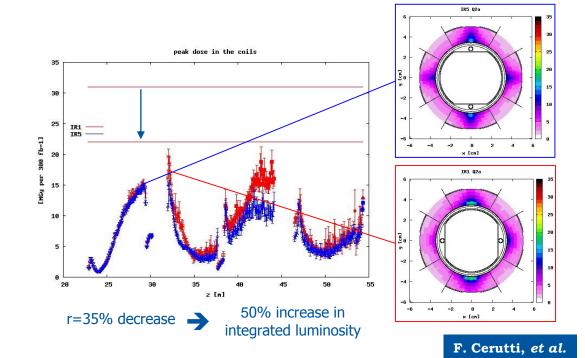

	2021	2022	2023	Comment
Beam Energy [TeV]		7.0		7.0 TeV is being re-discussed for Run-III
Collisions at IP1/5	2736 / 2736 (2484 / 2484)			() = Mixed filling scheme for possible heat load limitation
Collisions at IP2/8	2250 / 2376 (1949 / 2131)			() = Mixed filling scheme for possible heat load limitation
Bunch Length [ns]		1.2		Favorable for MKI and RF emittance blow-up
Normalized Emittance [µm]		1.8 (2.5)		() = Pessimistic emittance preservation
Bunch Charge [10 ¹¹ ppb]	0 → 1.4 1.4 → 1.8 1.8 *		1.8 *	Assuming marginal losses in the ramp (~ 1%) * A priori the LHC cannot take more than $1.8 \times 10^{11} \mathrm{ppb}$ during Run-III
L _{level} [Hz/cm ²]	$2 \cdot 10^{34}, \ 1.3 - 1.4 \cdot 10^{31}, \ 2 \cdot 10^{33}$		$2 \cdot 10^{33}$	For IP1/IP5 , IP2, IP8 respectively.

Optics Flavors & Triplet Lifetime (I)

- The **triplet lifetime** shall extend until LS3, but should **not be an obstacle to the luminosity production** in Run-III → Run-I/II: Optics can affect IT lifetime.

 Triplet dose limit: 30 MGy
- Two optics flavors to exploit during Run-III
 - Round $(\beta_X^* = \beta_{||}^* = \beta_{round}^*)$ \rightarrow Swapping the vertical crossing polarity \rightarrow H, +V, -V \rightarrow Choice for 2021




Optics Flavors & Triplet Lifetime (II)

- The triplet lifetime shall extend until LS3, but should not be an obstacle to the luminosity production in Run-III.

 Triplet dose limit: 30 MGy
- · Two optics flavors to exploit during Run-III
 - Round Optics $(\beta_X^* = \beta_{||}^* = \beta_{round}^*)$ \rightarrow Swapping the vertical crossing polarity \rightarrow H, +V, -V
 - Flat Optics $(\beta_X^* > \beta_{round}^* > \beta_{||}^*, \sqrt{\beta_X^* \beta_{||}^*} \approx \beta_{round}^*$ at cst lumi) \rightarrow H, +V, -V

The crossing angle is rotated by 90deg and deployed in the plane of highest β^* to minimize the loss factor.

Optics Flavors & Triplet Lifetime (III)

- The triplet lifetime shall extend until LS3, but should not be an obstacle to the luminosity production in Run-III.

 Triplet dose limit: 30 MGy
- · Two optics flavors to exploit during Run-III
 - Round Optics $(\beta_X^* = \beta_{||}^* = \beta_{round}^*)$ \rightarrow Swapping the vertical crossing polarity \rightarrow H, +V, -V

• Flat Optics $(\beta_X^* > \beta_{round}^* > \beta_{||}^*, \sqrt{\beta_X^* \beta_{||}^*} \approx \beta_{round}^*$ at cst lumi) \rightarrow H, +V, -V

F. Cerutti, et al.

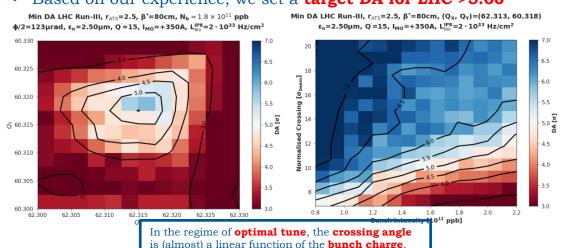
	Run-l	2015	2016	2017	2018	Total		
Energy [TeV]	3.5 / 4		6.5					
$L_{int} [fb^{-1}]$	30	5	40	50	65	190		
Lumi averaged half crossing angle [µrad]	- 145	- 205	- 180	+135	+ 144			
IR1Q2a up [MGy]	0.5	0.2	1.7	4.5	6.1	13		
IR1Q2a down [MGy]	1.0	0.6	4.3	2.1	2.7	11		
IR5Q2b in [MGy]	0.7	0.4*	3.0*	2.8	3.9	11		
* 0								

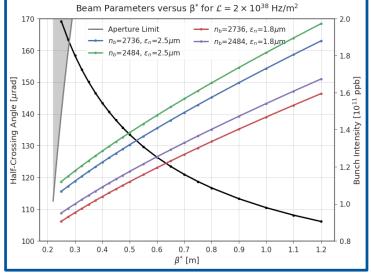
^{*} Crossing angle dependence in IR5 not fully studied yet

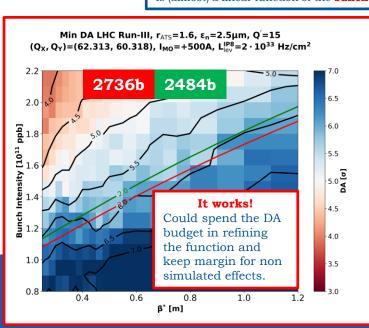
The target of any operational scenario would be to **keep the crossing-angle as small as possible** for as long as possible, without sacrificing performance. → "Safely operating just above the BB limit"!

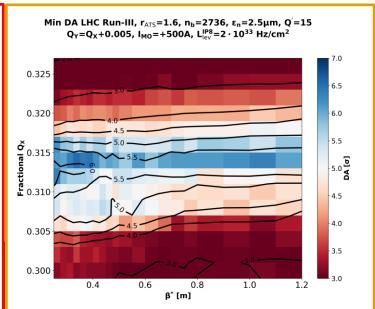
Flat optics is an appealing option on reducing the peak dose

In terms of triplet lifetime, cryogenics and experiments (pileup) there is no foreseen constraint in constantly operating at a luminosity of $2.0 \times 10^{34} \ Hz/cm^2$

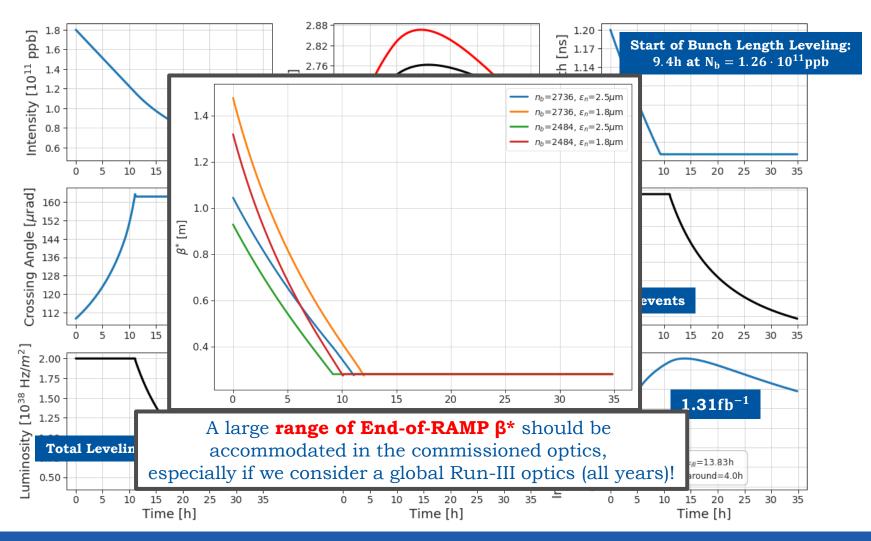

Running Scenarios under the guidance of Beam-Beam simulations


• We use **Dynamic Aperture** beam-beam simulations to estimate the beam lifetime.


• DA simulations were proved to be a helpful "tool" to guide the **LHC**


operation during Run-II (tune optimizations, anti-leveling, etc).

Based on our experience, we set a target DA for LHC >5.0σ

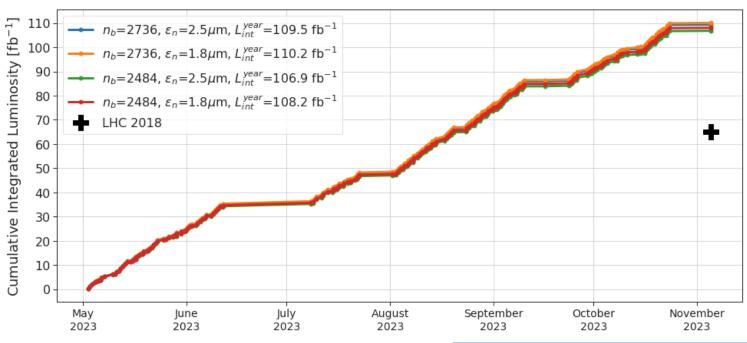


- I. Large dynamic range of β*: 20% in 2018 → up to 500% in 2023
- II. Not all the luminosity shall be produced at the maximum crossing angle (IT lifetime)
- III.De facto parametric variation of the crossing angle with β* shall be established.

STABLE BEAMS (in 2023)

* Contribution of IR8 included. Not Including major losses beyond expectation.

IBS+SR+Extra Growth H = 0.05 μ m/h & V = 0.10 μ m/h | Leveling at $2.0\times10^{38}Hz/m^2$ $N_{1,2}=1.80\times10^{11}$ pbb, $\phi/2=109~\mu$ rad, nb = 2736, $\beta_0^*=1.0$ m, $\varepsilon_n^{x,y}=2.5~\mu$ m, $\sigma_{boff}^*=110$ mb, $\sigma_{inel}=81$ mb

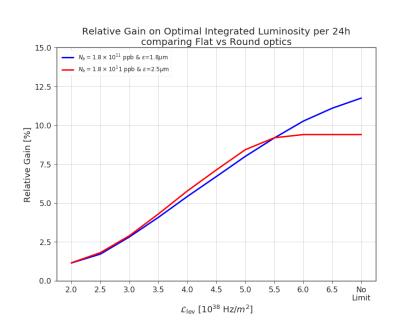


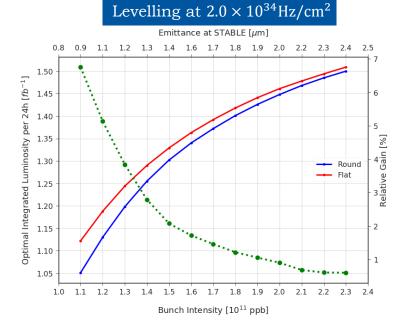
Looking into our crystal ball

- Using the above (ideal) scenario and the 2018 fill statistics
- Possible impact of larger intensity and higher energy on the machine availability is not considered.

Estimated Cumulative Integrated Luminosity of 2023 Using 2018 Fill Statistics

- Integrated performance of $\approx 108 \text{fb}^{-1}$
- Average (stat.) half-crossing angle 122.0 μrad
- Average value of β^* at the time of dump 55 cm


• No significant impact (<2%) on the performance, from the number of bunches or emittance preservation due to leveling (assuming no other losses).



Date

What about flat optics?

- The potential of the flat optics is limited by the **levelled luminosity** of $2 \times 10^{34} Hz/cm^2$.
- Could be an interesting alternative for boosting performance in the **low-intensity regime**.

- On the other hand, to **ease the LHC commissioning**, for **2021** there is a preference to stick to the well-known **round optics**.
- For the operation of 2022/2023 the decision on optics is **postponed for EYETS-2021/2022**.
 - based on MDs and re-evaluation of the need (with refined forecast of Run-III performance, confirmation of the CERN master schedule, etc.)
- However, some information is already available!

Triplet Lifetime Forecast

Run-III PROSPECTS	up to now	2021	2022	2023	up to triplet replacement
beam energy [TeV]			7		
integrated lumi [fb ⁻¹]	190	25 90		120	425
		ROUND	OPTICS		gle dependence operly studied yet
lumi averaged half cross. angle [urad]		-162	-148 (-162)	+134 (+162)	
IR1 Q2a up [MGy]	13	1.2	4.2	11.9 (13.4)	30 (32)
IR1 Q2a down [MGy]	11	2.8	9.5 (10.0)	5.6	29 (29)
IR5 Q2b inward [MGy]	11	1.9*	6.2* (6.8*)	7.5* (9.1*)	27 (29)
		FLAT	OPTICS		ming IR5 polarity on in 2023
lumi averaged half cross. angle [urad]		130	130	130	
IR1 Q2a up [MGy]	13	1.7	6.0	8.0	29
IR1 Q2a down [MGy]	11	1.7	6.0	8.0	27
IR5 Q2b inward [MGy]	11	1.0	3.6	4.8	** 20

F. Cerutti, et al.

With the help of crossing angle polarity inversion, 235 fb⁻¹ could be added at 14 TeV c.m. before reaching the 30MGy limit.

→ Additional 15fb⁻¹ can be gained thanks to the parametric crossing angle variation (bare minimum gain without pushing down the average crossing angle)

Flat optics remain an interesting configuration for 2022/2023:

- → It would provide a small additional margin in IR1,
- → Preserve to a sizeable
 extend the CMS triplets,
 to serve as IR8 spare
 magnets for the HL-LHC
 era

Conceptual Design of Run-III optics

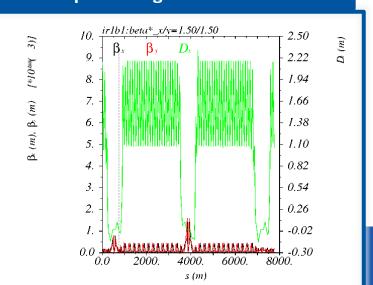
• The strategy on STABLE works **conceptually** → need to complete the picture with the full LHC Cycle

INJPHYS

→ Optics are a priori unchanged with respect to 2017/2018

RAMP

→ Telescope needs to be deployed to increase the efficiency of octupoles for Landau damping



→ No SQUEEZE BP

STABLE

- → Collide & Squeeze → Large range of Start SB β^* & Tele-index of 2-3
- → Preference from FP to squeeze in tele-mode: keeping a constant R-matrix from the IP to the Roman Pots.
- \rightarrow ATLAS/CMS : β^* leveling with adapting the crossing angle simultaneously
- → LHCb : Offset leveling & H crossing angle (V?) : L ≤ 2 × 10^{33} Hz/cm² & β* = 1.5 m
- → ALICE : Prepared for luminosity $L \le 1.3 1.4 \times 10^{31} Hz/cm^2$ (Ions disconnected

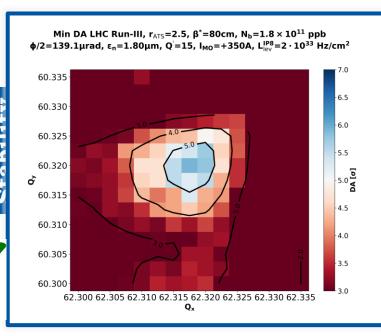
ROUND: β* leveling from 1.5 m to 24 cm ysics)

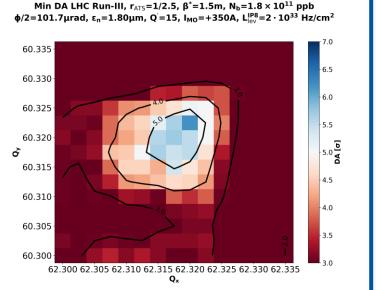
Considering in addition, the allowed range of [1/4, 4] for the tele-index for matchability, the only possible approach is to start the β^* leveling from an **anti-telescope**, **cross the 1/1** tele-index and continue in **telescopic SQUEEZE**.

Combined Ramp and Anti-Telescopic Squeeze (CRATS)

N. Karastathis

Concerning the anti-telescope


• Starting from an **anti-telescope configuration** we get:


Predicted MO thresholds @ FT and benefits from (anti-)telescopic optics						
MO thresholds [A] @ 7 TeV (Imo>0) * Including factor 2.0 margin	2021 (1.4/1.8 brightness)	2022/2023 (1.8/1.8 brightness)				
Tele index of 1 (standard)	430	550				
Tele-index of 2.5 (telescopic)	275	350				
Tele-index of 1.8 (telescopic)	350	455				
Tele-index of 1/1.8 (anti-telescopic)	350	500				
Tele-index of 1/2.5 (anti-telescopic)	305	350				

* The ramp will a priori change from 2021 to 2022, unless good news in the MO measured thresholds.

Choice of EoR telescopic parameters	2021	2022	2023
EoR β* [m] at IP1 & IP5	1.1	1.5	5
EoR pre-squeezed β* [m]		0.6	
Tele-index (anti-telescopic)	0.6/1.1 = 1/1.8	0.6/1.5 1/2.5	; =

Beam-Beam

Beam Parameters at End of RAMP

	2021	2022 2023		Comment
Beam energy [TeV]	7.0			7 TeV is being re-discussed for Run III
Collisions at IP1/5 & IP2/IP8	2736/2736 & 2250/2376			Possible heat-load limitation not included
Bunch length [ns]	1.2	1.2 1.2 1.2		1.0 ns after ~10 h of SB, then kept constant
Normalized emittance [µm]	2.5 2.5 2.5		2.5	Huge margin taken (could be as small as 1.8 μm)
Bunch charge [10 ¹¹ ppb]	0 → 1.4	1.4 → 1.8	1.8	Intensity ramp up within each year

OPTICS PARAMETERS @ Beginning of SB							
β* [m] at IP1/5 1.1 1.5		1.5	1.5	Anti-telescopic optics			
β* [m] at IP2/IP8	10.0/1.5	10.0/1.5	10.0/1.5	β* @ IP2/8 is kept constant over the full Run			
Half X-angle [µrad] at IP1/5	108	102	102	V/H (resp. H/V) for round (resp. flat) optics levelling			
Half X-angle [σ_{beam}] at IP1/5	12.4	13.6	13.6	Calculated with γε=2.5 μm			
Peak lumi [10 ³⁴ cm ⁻² s ⁻¹] @ IP1/5	0 → 1.55	1.19 → 1.98	1.98	Calculated with γε=1.8 μm (best lumi conditions)			
Half X-angle [µrad] at IP2/8	200/250	200/250	200/250	V/H at IP2/8 (V-Xing in IR8 under discussion)			
Half sep. @ IP2 [σ_{coll}]	0 → 1.79	1.79 → 1.89	1.89	For $1.3 \times 10^{31} \text{Hz/cm}^2$ & 200-70=130 µrad Xing			
Half sep. @ IP8 [σ_{coll}]	0 → 0.76	0.76 → 0.97	0.97	For $2.0 \times 10^{33} \mathrm{Hz/cm^2}$ & 250+135=385 µrad Xing (worst case)			

Beam Parameters at End of STABLE (Round Case)

ROUND OPTICS	2021	2022	2023	Comment
Beam energy [TeV]		7.0		7 TeV is being re-discussed for Run III
Collisions at IP1/5 & IP2/IP8	273	36/2736 & 2250/23	76	Possible heat-load limitation not included
Bunch length [ns]		1.0		1.0 ns after ~10 h of SB, then kept constant
Normalized emittance [µm]		2.5		
β* [m] at IP1/5		0.28		Telescopic optics
Half X-angle [mrad] at IP1/5		162 (9.4 σ_{beam})		V/H
Levelling time @ $2 imes 10^{34} Hz/cm^2$ [h]	0.0 → 5.0	5.0 → 11.9	11.9	Burn off calculated with 110 mb (IR8 included)
Optimal fill length [h]	→ 9.8	9.8 → 14.6	14.6	Assuming a turn around time of 4 h
Bunch charge [10 ¹¹ ppb]	0 → 0.89	0.89 → 0.97	0.97	
β* [m] at IP2/IP8	10.0/1.5	10.0/1.5	10.0/1.5	β* @ IP2/8 is kept constant over the full Run
Half X-angle [mrad] at IP2/8	200/250	200/250	200/250	V/H at IP2/8 (V-Xing in IR8 under discussion)
Half sep. @ IP2 [σ_{coll}]	0 → 1.60 ⁽¹⁾	1.60 → 1.64	1.64	For $1.3 \times 10^{31} \text{Hz/cm}^2$ & 200-70=130 µrad Xing
Half sep. @ IP8 [σ_{coll}]	0 → 0.13 ⁽²⁾	0.13 → 0.38	0.38	For $2.0 \times 10^{33} \text{Hz/cm}^2$ & 250+135=385 rad Xing (worst case)

⁽¹⁾ Lumi levelling at $1.3 \times 10^{31} \text{Hz/cm}^2$ in Alice over the full fill length is granted when the intensity ramp up reaches ~ 2×10^{10} ppb with 2250 collisions/turn

⁽²⁾ Lumi levelling at $2.0 \times 10^{33} \text{Hz/cm}^2$ in LHCb over the full fill length will be granted towards the end of 2021 @ 1.4×10^{11} ppb for negative LHCb polarity assuming 2376 collisions/turn [and earlier for positive polarity, with 115 µrad internal crossing, when the intensity ramp up reaches 1.15×10^{11} ppb].

A Performance Forecast

Experiment	Target for Run-III	
ATLAS & CMS	As much as possible! (pileup < 60 events)	
Alice	200 pb ⁻¹	
LHCb	> 15 fb ⁻¹ (50 fb ⁻¹ by LS4)	

Theoretical maximum estimates, assuming

- 160 OP days & 4h turnaround time
- Machine Efficiency: 20% in 2021 and 50% later
- Intensity ramp-up: linear within a year
- Peak Luminosity: IP1/5: 2.0×10^{34} Hz/cm²,

IP2: 1.3×10^{31} Hz/cm², IP8: 2.0×10^{33} Hz/

 cm^2

Difective cross-sections atomo

	2021	2022	2023		
Intensity ramp up [1011 ppb]	0 → 1.4	1.4 → 1.8	1.8		
	Round optics (Fla	t optics)			
Optimal fill length [h]	→ 9.8 (10.8)	9.8 (10.8) → 14.6 (16.4)	14.6 (16.4)		
β* [m] at IP1/5	0.28 (0.50/0.15)				
Integrated lumi in IR1/5 [fb-1]	18 (19)	97 (102)	106 (110)		
β* [m] at IP2		10.0			
Integrated lumi in IR2 [pb ⁻¹]	36 ⁽¹⁾	90	90		
β* [m] at IP8		1.5	•		
Integrated lumi in IR8 [fb-1]	~ 3 ⁽²⁾	14	14 Exc		

⁽¹⁾ Lumi levelling at $1.3 \times 10^{31} \text{Hz/cm}^2$ in Alice over the full fill length is granted when the bunch population reaches ~2 $\times 10^{10}$ p/b with 2250 collisions/turn

⁽²⁾ Lumi levelling at $2.0 \times 10^{33} \text{Hz/cm}^2$ in LHCb over the full fill length is granted when the intensity ramp up reaches 1.4×10^{11} ppb (resp. 1.15×10^{11} ppb) with 2376 collisions/turn for negative (resp. positive) LHCb polarity. A performance reduction factor of 50% has been applied accordingly in 2021.

Summary

- Pending the confirmation & possible updates of various equipment systems (MKI, RF, TCDS, TDE etc.), the maximum bunch intensity accepted in the LHC is capped at 1.8×10^{11} ppb for Run-III.
- The main guideline for Run-III scenarios must be the **preservation of triplet lifetime**
 - → Crossing angle as small as possible (eventually flat optics in 2022/2023).
- "Simultaneously" adapting of β* (in tele-mode) and crossing angle is the leveling strategy of choice for IP1/5 (offset leveling for IP2/8)
 - → Beam-beam validation of the conceptual leveling.
- Large dynamic range of EoR β^* values & need for telescope in the RAMP \rightarrow **CRATS**
- The SQUEEZE BP is skipped \rightarrow Collide & Squeeze to reach $2.0 \times 10^{34} \text{Hz/cm}^2$ as fast as possible following by β^* leveling in tele-mode only (FP experiments).
- Restart in **2021** with **round optics**, decision for round/flat for 2022/2023 after the MD period of 2021.
- Very preliminary performance estimates (with many assumptions) show an integrated performance of ~110 fb⁻¹ (2023) for IP1/IP5, with >400 being within reach until LS3.

Short-time plan of the WG

- Finalize the studies & consolidate the maximum intensity of 1.8×10^{11} ppb.
- · Test the validity of injection optics in terms of beam-beam
- Prepare the complete set of optics for the Run-III operation (Q2 2019)
- · Validate the optics in terms of collimation, stability, beam-beam, estimated performance, etc.
- → 1st report to the LMC : 6th of March

Thank you for your attention!

