

Motivation for crystal collimation for HL-LHC

R. Bruce on behalf of WP5

Material from A. Abramov, C. Bahamonde, N. Fuster Martinez, A. Lechner, A. Mereghetti, D. Mirarchi, S. Redaelli

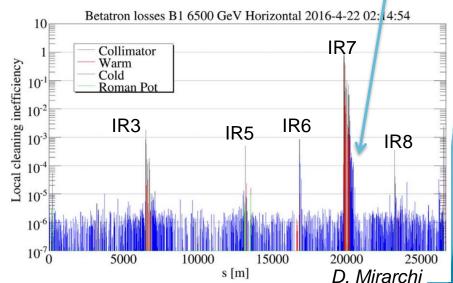


2018.10.19

Outline

- HL-LHC collimation baseline upgrades for betatron cleaning
- Cleaning efficiency with Run 3 and Run 4 layouts for protons and Pb ions
- Outcome of energy deposition studies
- Performance concerns for Pb ion collimation

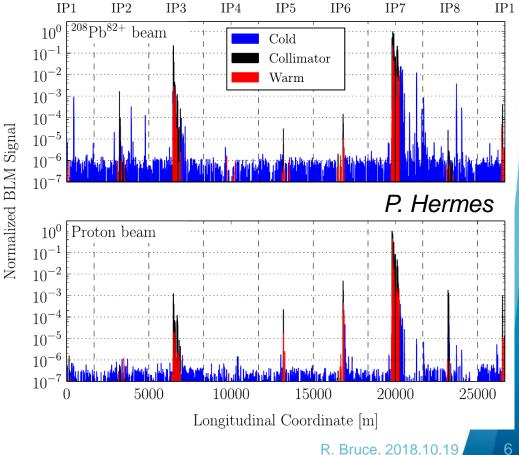
Baseline collimation upgrades


- LS2 collimation upgrades (per beam)
 - 2 low-impedance primary collimators (TCPPM) in IR7
 - 4 low-impedance secondaries (TCSPM) in IR7
 - 1 dispersion suppressor collimator (TCLD) downstream of IR7
 - 1 dispersion suppressor collimator (TCLD) downstream of IR2
- LS₃ collimation upgrades (per beam)
 - 7 low-impedance secondaries (TCSPM)
 - 6 new tertiary collimators (TCTPM), 2 re-used (TCTPV)
 - 4 physics debris collimators (TCLP)
 - 6 fixed masks (TCLM)

em should safely dispose proton losses

Reminder: Why do we need a cleaning upgrade?

- Collimation system should safely dispose of unavoidable losses
- Small leakage of particles out of collimation system (cleaning inefficiency)
 - Main bottleneck: IR7 dispersion suppressor
 - Quench limit and inefficiency limit allowed loss rate
 - For given beam lifetime, limit on total intensity



Comparison of Pb ions and protons

For both species, limit is in the IR7 DS

- Factor ~100 worse cleaning inefficiency for ions
 - lon cleaning is critical, in spite of stored energy being much lower than for protons

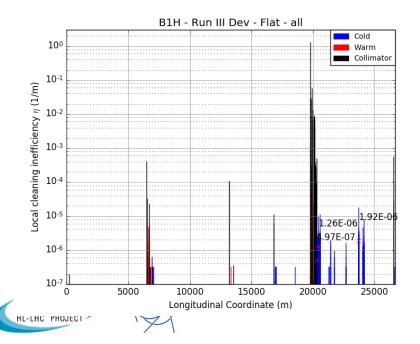
How to improve for HL-LHC

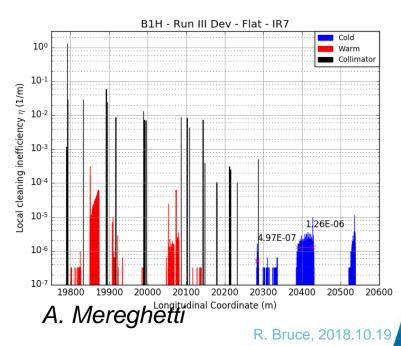
- Risk to be limited in intensity reach if nothing is done
- IR7 DS is the bottleneck, due to off-energy particles (or ion fragments) scattered out of primary collimator

Collimators

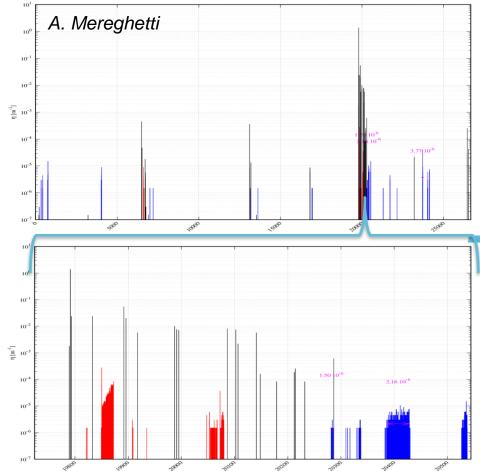
- Solution: introduce extra collimators, TCLDs, in dispersion suppressor
 - Make space by replacing a standard dipoles by two shorter 11T dipole, with TCLD in between
- Present HL baseline: install 1 IR7 TCLD per beam in LS₂
 - 2 TCLDs per side also studied (previous baseline would give best performance)
 - Excluded to have more 11T units available in LS2

TCLD

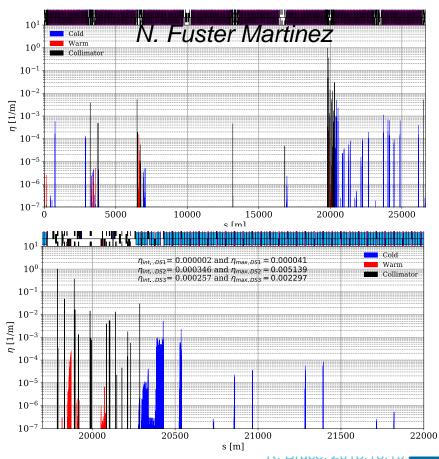

Performance with upgraded layouts


- Collimation cleaning inefficiency studied in tracking simulations
 - Using SixTrack-FLUKA coupling
 - Run 3 and Run 4 (HL-LHC) studied
 - See talks A. Mereghetti and N. Fuster Martinez on Tuesday

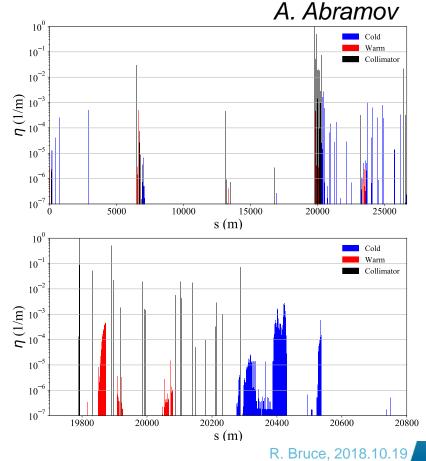
Proton cleaning – flat optics for Run 3


- Assumed similar collimator settings as 2018, β *= (50cm/15cm)
- TCLD shields well the first loss cluster

Proton cleaning – HL-LHC v1.3


- Similar performance for HL-LHC v1.3, β*=15 cm
 - Slightly more open collimator settings assumed than for Run 3

Pb ion cleaning – Run 3 layout


- Assuming the 2018 ion optics, but with the Run 3 layout
 - including TCLD and the foreseen low-impedance collimators

Pb ion cleaning – HL-LHC v1.2

- Using optics HL-LHC v1.2 ion version for v1.4 under development (R. de Maria)
- TCLD shields well the first loss cluster, but the second one remains almost unchanged
- Pb ion cleaning remains a factor ~100 worse than proton cleaning

Energy deposition studies

- Tracking simulations show the lost primary beam protons
- FLUKA energy deposition studies needed to assess the risk to quench magnets (C. Bahamonde, A. Lechner)
 - Using output from tracking as starting conditions
 - See talk C. Bahamonde in Wednesday's session
- Output: energy deposition, per lost primary proton or Pb ion on the collimation system
 - scaled up by factor 3 to compensate discrepancy with LHC measurement

Normalization of energy deposition studies

- Normalizing loss power to the two design loss scenarios:
 - 12 minute beam lifetime, to be sustained for 10 s
 - I h beam lifetime, to be sustained "infinitely"
- Assumptions on beam conditions for HL-LHC

	# bunches	# particles/bunch	Loss rate 12 min.	Loss rate 1 h.	Loss power (12 min.)	Loss power (1 h)
Protons	2760	2.3e11	8.81e11 p/s	1.76e11 p/s	988 kW	198 kW
Pb lons	1248	2.1e8	3.64e8 Pb/s	7.28e7 Pb/s	33 kW	6.7 kW

Simulated peak power load on DS magnets (HL-LHC)

C	C. Bahamonde - Wednesday's talk		PROTONS (mW/cm ³)						IONS (mW/cm3)					
V			Cell 8/9			Cell 11		Cell 8/9			Cell 11			
	TCLD position		MB*	MQ	11T	MB*	MQ	MB*	MQ	11T	MB*	MQ		
	No TCLD	0.2h	<u>21</u>	9.9	-	12	13	<u>57</u>	27	-	<u>57</u>	36		
	NOTCLD	1h	<u>4.2</u>	2	-	2.4	2.6	<u>11</u>	5.4	-	<u>11</u>	7.2		
Γ		0.2h	6.6	8.1	11	8.7	13	5.4	15	21	<u>36</u>	33		
	MBB.8	1h	1.3	1.6	2.2	1.7	2.6	1.1	3	4.2	<u>7.2</u>	6.6		
Γ		0.2h	6.0	8.1	<u>48</u>	<0.3	<0.3	6.0	3.6	<u>33</u>	<0.003	<0.003		
	MBA.9	1h	1.2	1.6	<u>9.6</u>	<0.06	<0.06	1.2	0.7	<u>6.6</u>	<0.0006	<0.0006		
	HILUMI *Quench limit for MB could be ~20 mW/cm ³ for steady state losses at 6.37Z TeV) R. Bruce, 2018.10.19 15													

Outcome of energy deposition study

- Numbers shown already in Madrid 2017 (see talk C. Bahamonde)
- The installation of the TCLD always improves the situation
- For protons, the HL-LHC baseline is solid and shows good performance
 - Some margin up to quench limit
- For Pb ions, even with the TCLD, peak energy deposition on standard dipole in cell 11 above estimated quench limit
- Unless typical beam lifetime drops stay significantly above 12 minutes, risk for availability issues due to beam dumps on losses

Conclusions

- Baseline collimation layouts for Run 3 and Run 4 presented
- Cleaning performance with protons and Pb ions estimated through tracking studies and energy deposition
 - Collimation system meets requirements for protons
 - For Pb ions, estimated peak energy deposition is above quench limit during 12 minute lifetime drop – risk to introduce operational bottlenecks
- Other alternative means of improving cleaning efficiency for Pb ions should be investigated
 - Crystals?

Total power in cryogenic cells (W)

C. Bahamonde - Wedensday's talk		PROTONS Half-cells						IONS Half-cells						
0.2h	50	<u>740</u>	15	<u>280-310</u>	100	10	10	<u>985</u>	35	<u>910-1015</u>	270	25		
1h	10	<u>148</u>	3	<u>56-62</u>	20	2	2	<u>197</u>	9	<u>182-203</u>	54	5		
0.2h	210	100	10	230-265	85	10	351	135	20	569-635	115	20		
1h	42	20	2	46-53	17	2	70	27	4	112-127	23	4		
0.2h	51	475	3	2.1-2.2	<1	<1	9	758	<1	<1	<1	<1		
1h	10	95	<1	<1	<1	<1	2	152	<1	<1	<1	<1		
	ition 0.2h 1h 0.2h 1h 0.2h	ait on8o.2h501h100.2h2101h420.2h51	and a stara star <th>Inde - Image: stalk ition 8 9 10 0.2h 50 740 15 1h 10 148 3 0.2h 210 100 10 1h 42 20 2 0.2h 51 475 3</th> <th>hode - r's talkHalf-cellssition891011*0.2h5074015280-3101h10148356-620.2h21010010230-2651h4220246-530.2h5147532.1-2.2</th> <th>Inde - Image: Field state Y's talk Image: Field state Image: Field state Sition 8 9 10 11* CC 0.2h 50 740 15 280-310 100 1h 10 148 3 56-62 20 0.2h 210 100 10 230-265 85 1h 42 20 2 46-53 17 0.2h 51 475 3 2.1-2.2 <1</th>	Inde - Image: stalk ition 8 9 10 0.2h 50 740 15 1h 10 148 3 0.2h 210 100 10 1h 42 20 2 0.2h 51 475 3	hode - r's talkHalf-cellssition891011*0.2h5074015280-3101h10148356-620.2h21010010230-2651h4220246-530.2h5147532.1-2.2	Inde - Image: Field state Y's talk Image: Field state Image: Field state Sition 8 9 10 11* CC 0.2h 50 740 15 280-310 100 1h 10 148 3 56-62 20 0.2h 210 100 10 230-265 85 1h 42 20 2 46-53 17 0.2h 51 475 3 2.1-2.2 <1	Half-cells Sition 8 9 10 11* CC 12 0.2h 50 740 15 280-310 100 10 1h 10 148 3 56-62 20 2 0.2h 210 100 10 230-265 85 10 1h 42 20 2 46-53 17 2 0.2h 51 475 3 2.1-2.2 <1 <1	Half-cells Sition 8 9 10 11* CC 12 8 0.2h 50 740 15 280-310 100 10 10 1h 10 148 3 56-62 20 2 2 0.2h 210 100 10 230-265 85 10 351 1h 42 20 2 46-53 17 2 70 0.2h 51 475 3 2.1-2.2 <1 <1 9	Half-cellsSition891011*CC12890.2h5074015280-31010010109851h10148356-6220221970.2h21010010230-26585103511351h4220246-5317270270.2h5147532.1-2.2<1<19758	Inde - Image: Stalk Image	nde - r's talkHalf-cellsHalf-cellsSition891011*CC12891011*0.2h5074015280-310100101098535910-10151h10148356-6220221979182-2030.2h21010010230-265851035113520569-6351h42220246-5317270274112-1270.2h5147532.1-2.2<1<19758<1<1	nde - r's talkHalf-cellsHalf-cellssition891011*CC12891011*CC0.2h5074015280-310100101098535910-10152701h10148356-6220221979182-203540.2h21010010230-265851035113520569-6351151h4220246-5317270274112-127230.2h5147532.1-2.2<1<19758<1<1<1		

HL-LHC PROJECT