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UA9: achievements and role for HL-LHC implementation
W. Scandale for the UA9 Collaboration

W. Scandale – Crystal Day 19/10/2018

TOPICS

• Key achievements in H8 
• The experimental apparatus

• Identifying particle interactions with bent crystals

• Channeling efficiency as a function of the bending radius

• Channeling versus volume reflection

• Key achievements in SPS
• The experimental apparatus

• Crystal collimation performance in the SPS

• Role of the absorber

• Test of the LHC-type goniometer 

• Crystal miscut and amorphous layer

• Deflecting particles along planes (110) or (111)

• Simulation codes

• Conclusive remarks

UA9 is a CERN experiment approved by the Research Board in 2008
Main goals
• investigate beam-crystal interactions

• propose and evaluate crystal assisted halo collimation in hadron colliders

• investigate beam manipulations with bent crystals: extraction, steering, focusing,…
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UA9 detector in the North Area

• Use a low-divergence incoming beam

• Choose the crystal orientation by acting on the goniometer

• Excellent angular resolution of each trajectory (~5 µrad)

~ 20 m

M. Pesaresi et al JINST_P04006

F.Iacoangeli et al.,2015 IEEE 

Nuclear sceince symposium

• the incoming trajectory of each particle

• the outgoing trajectory of each particle

• the inelastic interaction events

Observables:
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2. Channeling
P= 50 ÷ 65 %

1. 

amorphous

4. Volume 

Reflection 
P = 95 ÷ 98 %

6. 

amorphous

3. dechanneling

5. Volume 

Capture

Interactions in bent crystals
W. Scandale et al, 

• PRL 98, 154801 (2007)

• NIM B 268  (2010) 2655-26

• NIM B 355 (2015) 369–373 

Channeling

Volume Reflection

Eff = 95÷97%

𝜃VR ≈ 1.6 𝜃c

 Two coherent effects could be exploited for beam manipulation. 

𝜃c= 9.4 𝜇rad @ 450 Gev

= 2.4 𝜇rad @ 7 TeV

Eff = 50÷65%

𝜃b=𝓁/R is the desired 

deflection angle Critical angle
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2. Channeling
P= 50 ÷ 65 %

1. amorphous

4. Volume 

Reflection 
P = 95 ÷ 98 %

6. amorphous

3. dechanneling

5. Volume 

Capture

More details in the presentation of M. Garattini

Characterization of a bent crystal

𝜃b

𝜃VR

W.Scandale et al, 

Phys. Rev. ST – AB 11, 063501 (2008) 

Eur. Phys. J. C (2018) 78:505;

Nucl. Inst. and Methods 268 (2010) 2655–2659 

Crystal STF107

--- data (pions 180GeV)

-- simulation

-- reference for amorphous Si

Effect of torsion

Channeling efficiency

Probability of inelastic events

 Bending angles (for channeling and VR)

 Channeling efficiency

 Crystal torsion

 Nuclear interaction probability

Observables:
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Volume Reflection:

Deflection Angle versus Radius

Channeling:

Efficiency versus Radius

Importance of the bending radius
measurements performed in 2009 using the 

crystal ST9 build in INFN-FE
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for the effects in LHC see the talks of M. D’Andrea and R. Rossi 

W. Scandale et al.

PRL 101, 234801 (2008)

𝛼VR

RMS<𝛼VR>

Symbols in black are 

experimental data

Symbols in red are 

computer simulations
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Multi-volume reflection

Multi-heads crystal Multi-strip crystal

IHEP and INFN-Ferrara
PNPI

	
Multi-etched crystal

IHEP

Array of crystals

PNPI

Four assemblies conceived for multi-VR deflection: 
• Deflection angle n×𝜃VR

• Single-pass efficiency ≥ 90 %

Drawbacks:
• Deflection angle n×𝜃VR=1.6 n×𝜃c energy dependent

• @ 7 TeV n ≥ 10 (required in optical layout of the LHC collimation IR)

• Crystal technologies rather complex

• Crystal optimization with stringent tolerance for strip alignment

Multi-VR abandoned in LHC

n is the No. of strips or of crystals in the assembly

The concept

W. Scandale et al. 

• Nucl. Inst. and Methods B 338 (2014) 108–111

• Physics Letters B 692 (2010) 78–82 
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~ 60 m , Δμ = 90∘ 

CpFM


UA9 setup in the SPS ring (2008 - 2017)

Collimation region High dispersion area

Observables in the collimation area:

 Intensity, profile and angle of the deflected beam

 Local rate of inelastic interactions

 Channeling efficiency (with multi-turn effect)

Observables in the high-D area:

 Off-momentum halo population escaping 

from collimation (with multi-turn effect)

 Off-momentum beam tails
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2011 JINST 6 T10002
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Crystal collimation in the SPS
W. Scandale et al.

• Physics Letters B 726 (2013) 182–186

• Physics Letters B 714 (2012) 231–236 

• Physics Letters B 703 (2011) 547–551

• Physics Letters B 692 (2010) 78–82 

data


simulation


Protons


data


simulation


Pb ions


Dispersion 

suppressor

× 20

× 7

Protons


data


Pb ions


data


simulation


× 7

× 6

SPS BLM (low sensitivity)
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Main findings

 Crystal alignment fast and reproducible

 Loss rate is reduced everywhere in the SPS ring by 

well reproducible amounts as compared to a 

standard collimation scheme 
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s [m]
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SPS Beam

Absorber

BLM 5 BLM 7

Off-momentum loss from Cry.
Protons non 

absorbed ~3 10-3

crystal

Location Crystal

orientation

Losses from

crystal

Losses from

TAL

Total

losses
Losses

reduction

BLM5 AM 4.7 10-5 1.2 10-3 1.2 10-3

~7
BLM5 CH 7.7 10-7 1.7 10-4 1.7 10-4

BLM7 AM 1.5 10-4 4.2 10-5 1.9 10-4

~21
BLM7 CH 2.1 10-6 6.9 10-6 9.0 10-6

simulation results
 Beam loss rate at high Dx has two contributions:

 diffractive protons coming from the crystal

 channeled protons non absorbed (in 60 cm of W)

 Simulations and measurements show that:

 the two fractions sum-up at the first Dx peak location 

 only the fraction produced at the crystal survives at 

the second Dx peak location (for optical reasons)

Dx=3.8 m
Dx=4.6 m

Δϕ~90°

Measured loss reduction factor 

 BLM    @ the crystal  R =18

 BLM 5 @ Dx = 3.8 m R = 8

 BLM 7 @ Dx = 4.6 m  R = 18
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CERN-ACC-2015-0143 ; 

CERN-THESIS-2015-099

Losses in the dispersion suppressor (proton beam)

BLMcrystal

W. Scandale et al, Phys. Lett. B 748 (2015) 451–454 
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Role of the absorber for proton beam: W versus C

• Much higher leakage for C-collimator 1m 

long than for a W-collimator 60 cm long

Yet unpublishedLoss reduction factor recorded during an angular scan Loss rate recorded during a linear scan

In all the recorded cases:
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Role of the absorber for Xe beam 

CH Reduction factor have been 

measured and compared for crystal 

collimation with W and C absorber.

In dispersive areas W improves slightly 

the performance 

Yet unpublished
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Role of the absorber for Xe beam 
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Xe beam

Amp > 5mV

fragments produced by the 

interaction with the crystal

Xe deflected by the crystal

fragments produced 

in the LHC absorber

Carbon-carbon

Yet unpublished

data collected with tha Cherenkov detector

to disentangle nuclei with  different charge 
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SPS data collected in 2015

 The angle between the lattice and the surface of the crystal is called miscut

 Test with two strip crystals (INFN-FE) with almost identical geometry and very different 

miscut were made to clarify its influence on the crystal collimation performance

Crystal Bending angle Length (z) Width (x) Mis-cut angle Torsion

1 165 μrad 1.87 mm 0.5 mm 6 μrad < 1 μrad/mm

4 176 μrad 2.00 mm 0.5 mm 200 μrad < 1 μrad/mm

 No significant change of the loss 

regime during angular scans.

 Similar results with proton or ion beams

Crystal “miscut”

Crystal angle [ rad]
150 100 50 0 50 100 150 200 250 300
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S. Petrucci: Master’s Degree Thesis 2015 –Roma La Sapienza

Negligible effects at the SPS energy
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 In LHC particles in the halo drift outwards at the rate of ~2 nm per turn. 

 Since the tune is not integer, the particles will hit the crystal every ~10-20 turns

 The first impact parameter of the particles onto the crystal is in the range of ~100 nm 

 Crystal roughness should be lower than 100 nm on the lateral faces of the crystal 

Crystal “amorphous layer”

Anisotropic etching is the way chosen by INFN-Fe whilst optical polishing 

is the way chosen by PNPI to realize sub-surface damage free crystals 

entirely by wet chemical methods

Lateral surface 

(AFM)

Entry surface (HRTEM)

Sub-nm roughness is 

routinely achieved
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Characterization of crystals: (110) versus (111) planes
W. Scandale et al. / Physics Letters B 692 (2010) 78–82

1 expt. data

2 simulation

Channeling efficiency (75±4)%

Strip (110) QM (111)

Channeling efficiency
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 Efficiency = Ndeflected / Ncrystal

 Assumption:

the number of particles intercepted by a moving object is 

proportional to the loss rate downstream the object

 Ndeflected is proportional to the losses when intercepting 

the whole deflected beam

 Ncrystal is proportional to the losses when the collimator is 

the primary aperture

 efficiency for Pb ions: 50÷70%
Channeling efficiency (85±5)%
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 The performance and the reliability of the LHC-type 
goniometer fully verified in the SPS:
 closed-loop control system allows to compensate for mechanical 

vibrations and noise on the measurement system

 unprecedented resolution ( < 0.5 μrad)

 good angular stability (STD < 0.3 μrad)

 reproducibility of the angular positioning << θc = 10 μrad

 The operation of the goniometer in LHC was approved 
after the beam test in SPS

Test of the LHC-type Goniometer in SPS 

See also the talk of A. Masi
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Varying the rotational speed

Reduction factor = 4.3
(not optimal crystal)

Varying the rotational step mode stable loss for a large change 

of the linear position

Yet unpublished
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Crystal simulations

Computer codes used in UA9 to simulate crystal-particle interactions:
1) CRYD (A. Taratin) is based on the integration of equations of motion in the crystal, interfaced with a relatively simple transfer matrix tracking

code.

2) CrysColl (Y. Yazynin, V. Previtali, D. Mirarchi, W. Scandale) is based on event probability, interfaced to SixTrack by V.Previtali.

3) DYNACHARM++ (E. Bagli) is a Monte Carlo code based on the numerical solution of the equation of motion of particles in crystals whose

electron densities and electric fields are computed from x-ray analysis. The code is integrated to GEANT4.

4) Crystal (P. Schoof) modeled in "FLUKA style", although not yet implemented in FLUKA itself. A version of SixTrack exists, already interfaced to

FLUKA for the treatment of collimators.

 The four codes reproduce the measured data within 10%, and in 

particular channeling efficiency within 1% in a range of 1 critical 

angle. 

 Few refinements in the models can still be done, but they would 

hardly affect the predictive power of the codes for collimation 

purposes @450 GeV

 The benchmark @ 7TeV is more delicate and is slowly progressing 

using the data collected during the LHC machine developments. 

Proceedings of the international conference Channeling 15
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Conclusive remarks

The feasibility of crystal-collimation in hadron colliders has been fully demonstrated

 The key technologies have been well developed and validated:
 Reproducible crystal production

 Reliable bending methods

 Assessment of crystal performance

 Alignment methodologies

 Instrumentation for a fast and reliable operation of crystal-collimation

 An efficient layout has been implemented in the SPS (and later in LHC)

 Experimental methods have been introduced to evaluate the collimation performance

In addition to these achievements, UA9 has investigated with success:
 Development and test of special crystal for other application

 Crystal-extraction in non-resonant mode

 Shadowing of the electrostatic septum to reduce beam-loss during resonant extraction

 New experimental concepts
 To measure magnetic moment of rare baryons in high-energy hadron colliders, such as LHC

 To reduce background and enhance the acceptance of an apparatus a la TOTEM investigating low-p physics
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