

PETERSBURG NUCLEAR PHYSICS INSTITUTE NAMED BY B.P. KONSTANTINOV OF NATIONAL RESEARCH CENTRE «KURCHATOV INSTITUTE»

Crystal technology at PNPI

Yury M. Ivanov and Yury A. Gavrikov

HiLumi LHC - Crystal Collimation Day, CERN
October 19, 2018

Crystal facility were founded to support basic researches at PNPI

Facility founders:

Yu.P.Platonov - fine mechanics and astronomic optics

A.I.Smirnov - particle masses, beam focusing with crystals

O.I.Sumbaev – quasi-mosaic (QM) effect, volume capture (VC) effect

Bent quartz crystals to measure particle masses

PHYSICAL REVIEW D 98, 030001 (2018)

REVIEW OF PARTICLE PHYSICS

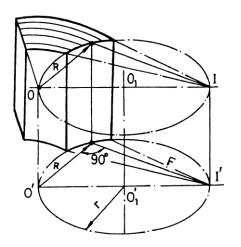
K± MASS

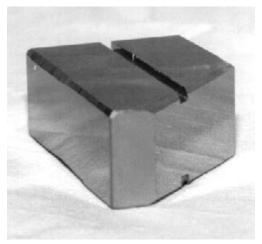
Best measurement up to now

Best measurement up to now

Crystals 1x120x120 mm³, QM cuts Bending 5 meters

VALUE (MeV)	DOCUMENT IE)	TECN	CHG	COMMENT
493.677 ±0.016 OUR FIT 493.677 ±0.013 OUR AVERA below.	Error includes scal AGE Error includ			of 2.4.	See the ideogram
493.696 ±0.007	¹ DENISOV	91	CNTR	_	Kaonic atoms
493.636 ± 0.011	² GALL	88	CNTR	-	Kaonic atoms
493.640 ±0.054	LUM	81	CNTR	_	Kaonic atoms
493.670 ± 0.029	BARKOV	79	EMUL	\pm	$e^+e^- \rightarrow K^+K^-$
493.657 ± 0.020	² CHENG	75	CNTR	_	Kaonic atoms
493.691 ± 0.040	BACKENST	D73	CNTR	_	Kaonic atoms
• • We do not use the fol	lowing data for av	erages,	fits, limi	its, etc	. • • •
493.631 ± 0.007	GALL	88	CNTR	_	K^- Pb (9 \rightarrow 8)
493.675 ± 0.026	GALL	88	CNTR	_	K^{-} Pb (11→ 10)
493.709 ± 0.073	GALL	88	CNTR	_	K^-W (9 \rightarrow 8)
493.806 ± 0.095	GALL	88	CNTR	_	K^-W (11 \rightarrow 10)
$493.640\pm0.022\pm0.008$	³ CHENG	75	CNTR	_	K ⁻ Pb (9→ 8)
$493.658 \pm 0.019 \pm 0.012$	³ CHENG	75	CNTR	_	K^- Pb $(10 \rightarrow 9)$
$493.638 \pm 0.035 \pm 0.016$	³ CHENG	75	CNTR	_	K^{-} Pb (11→ 10)
$493.753 \pm 0.042 \pm 0.021$	³ CHENG	75	CNTR	_	K ⁻ Pb (12→ 11)
$493.742\pm0.081\pm0.027$	³ CHENG	75	CNTR	_	K ⁻ Pb (13→ 12)


Σ - MASS

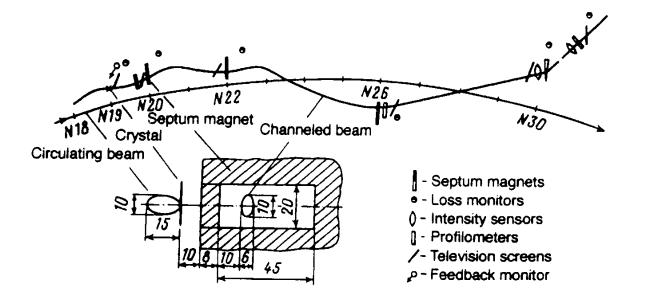

The fit uses Σ^+ , Σ^0 , Σ^- , and Λ mass and mass-difference measurements.

VALUE (MeV)		DOCUMENT ID			COMMENT
1197.449±0.030 O	JR FIT Error	r includes scale f	actor o	f 1.2.	
1197.45 ±0.04 O	JR AVERAGE	Error includes	scale f	actor of	1.2.
1197.417 ± 0.040		GUREV	93	SPEC	Σ^- C atom, crystal
1197.532±0.057		GALL	88	CNTR	Σ^{-} Pb, Σ^{-} W atoms
1197.43 ±0.08	3000	SCHMIDT	65	HBC	See note with A mass
• • • We do not us	e the followin	g data for averag	ges, fits	, limits,	etc. • • •
1197.24 ±0.15		¹ DUGAN	75	CNTR	Exotic atoms
¹ GALL 88 conclu	des that the D	DIGAN 75 mass	needs t	to be ree	valuated. 3

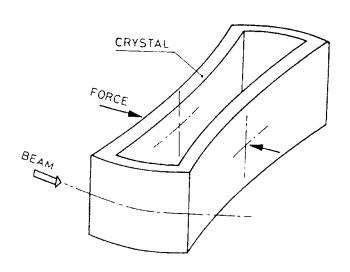
Bent silicon focusing crystals

A.I.Smirnov

Experiments at U-70

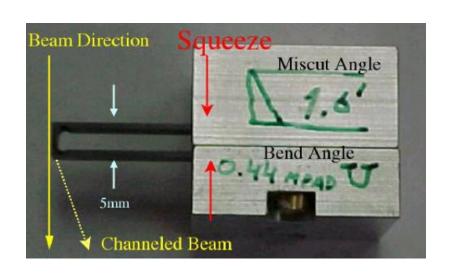


$$F^2 = 4r^2 - R^2$$

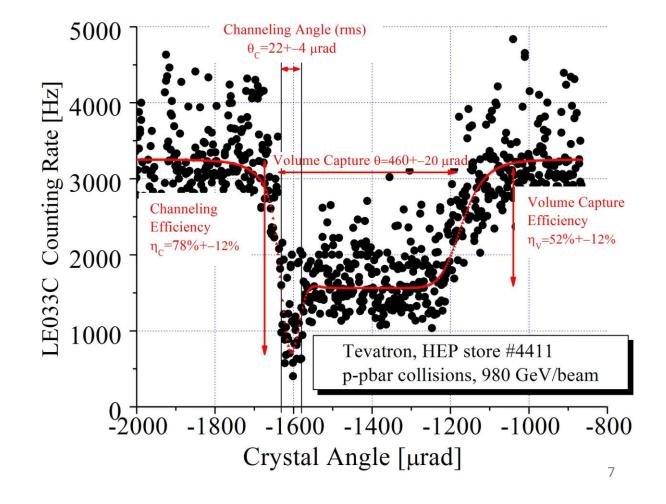

- F focal distance
- R bending radius of the crystal
- r radius of the exit crystal face

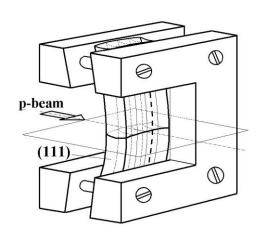
Short bent silicon crystals for multi-pass extraction of proton beam from U-70

- Bent crystal to deflect beam into septum aperture
- Magnet system to extract beam

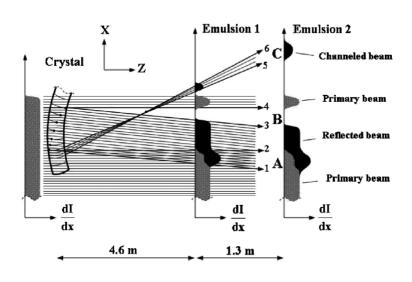


Bent silicon O-crystals. Beam extraction at U-70.

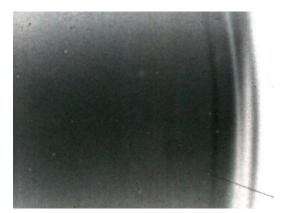


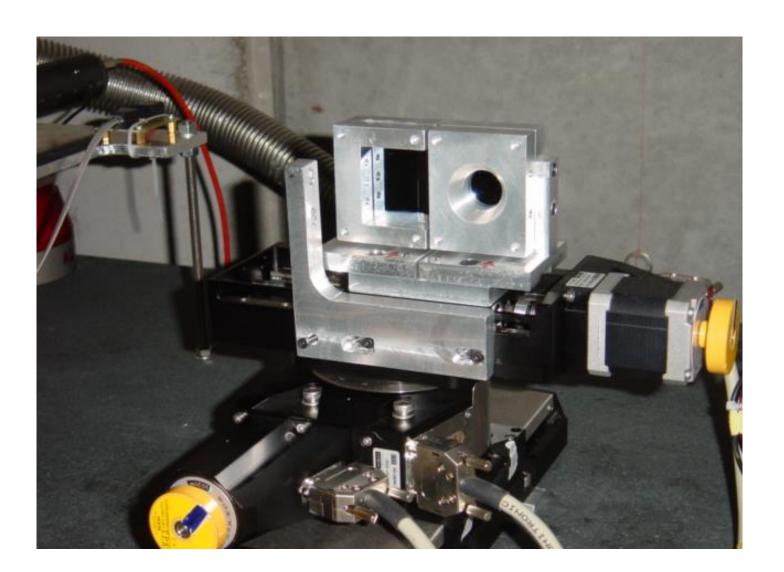

Bent silicon O-crystals. Collimation at RHIC and Tevatron.

1 TeV Channeling, October 5, 2005



Silicon crystals with Quasi-Mosaic (QM) bending. First observation of Volume Reflection (VR) effect at U-70.





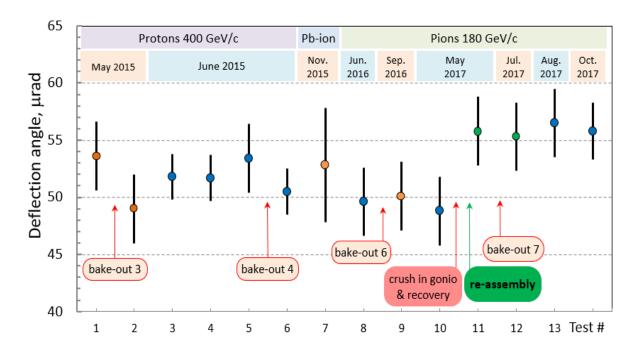
Silicon crystals with Quasi-Mosaic (QM) bending. The H8RD22 and UA9 studies at CERN. Feasibility of crystal collimation.

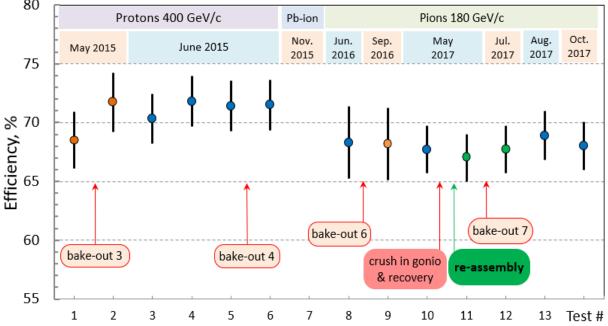
QM1 and QM2 crystals at H8, 2006

LHC-type Quasimosaic crystals tested in 2015 - 2017

QMP52 – installed into LHC in February, 2017 changed for ACP76 in February, 2018

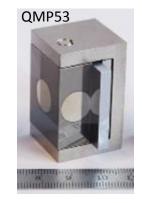
QMP53 – installed into LHC in February, 2017

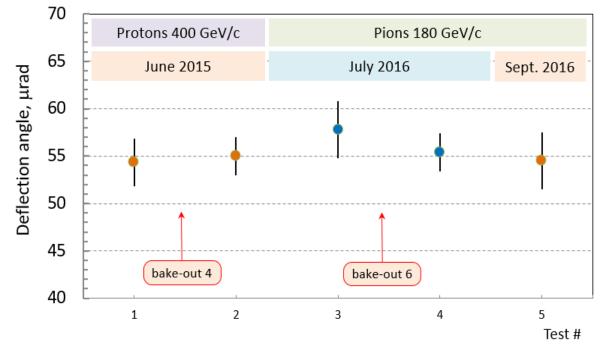

Installed to LHC 2016-2017 YETS

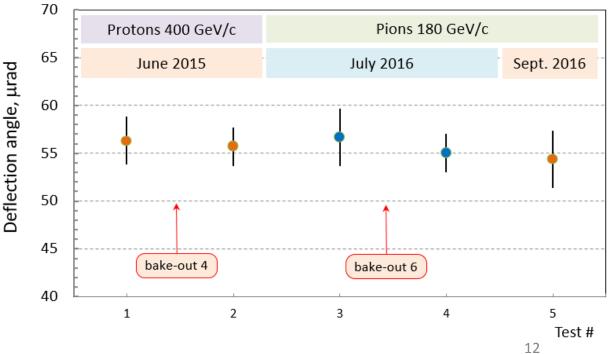

	Crystal	Runs	Deflection angle, urad ± 1 urad	Efficien ±3 mm Y p ±8 urad X	oos. cut	Torsion urad/mm ± 1 urad/mm	Stability at 250 °C
				Protons 400 GeV/c	Pions 180 GeV/c		
	QMP46	2018-2017	56	71	68	0	ОК
QM	QMP54	2015-2017	56	70	68	0	ОК
QuasiMosaic	QMP52	2015-2016	55	70	65	0	ОК
	QMP53	2015-2016	55	69	66	0	ОК

Stability of QMP46 in time and after bake-out at 250 °C

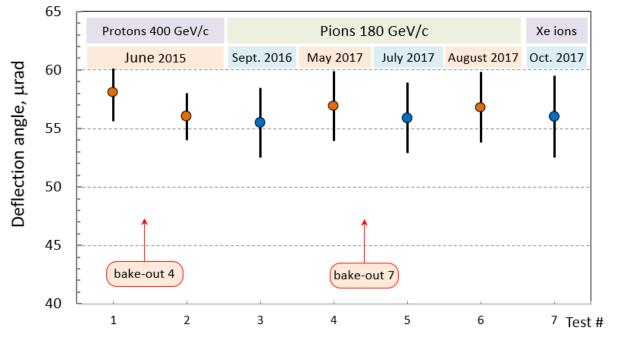
- The stability of QMP46 was confirmed with 4 bake-outs at 250°C
- The stability in time is confirmed during period 2015-2017
- Crystal was experienced a crash inside of LHC goniometer while motion tested
- Crystal was successfully restored and confirmed stability of parameters

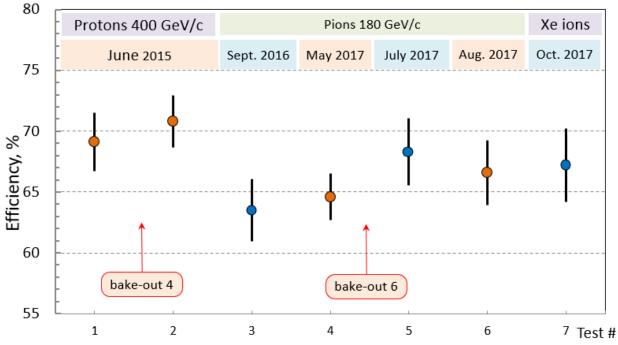





Stability of QMP52,QMP53 in time and after bake-out at 250 °C

- The stability of QMP52, QMP53 was confirmed with 2 bake-outs at 250°C
- The stability in time is confirmed during period 2015-2016
- Both crystals were installed in LHC



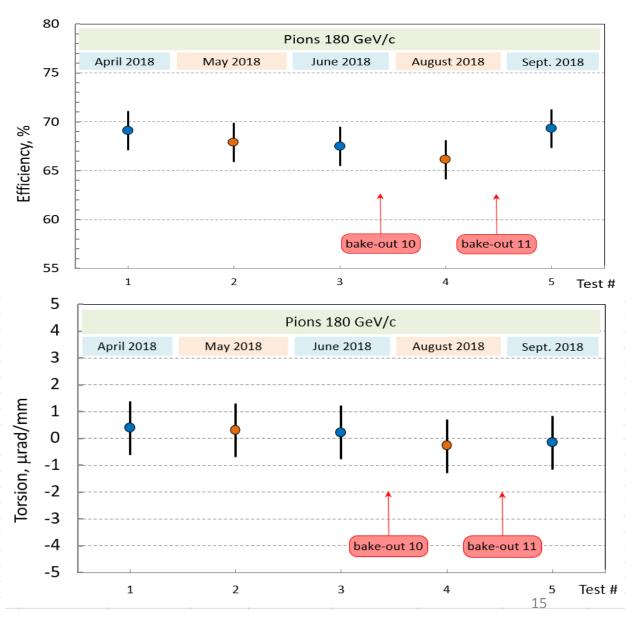


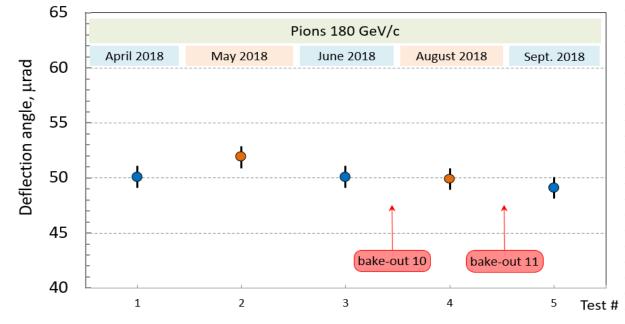
Stability of QMP54 in time and after bake-out at 250 °C

- The stability of QMP54 was confirmed with 2 bake-outs at 250°C
- The stability in time is confirmed during period 2015-2017

LHC-type Anticlastic crystals tested in October 2017 – September 2018

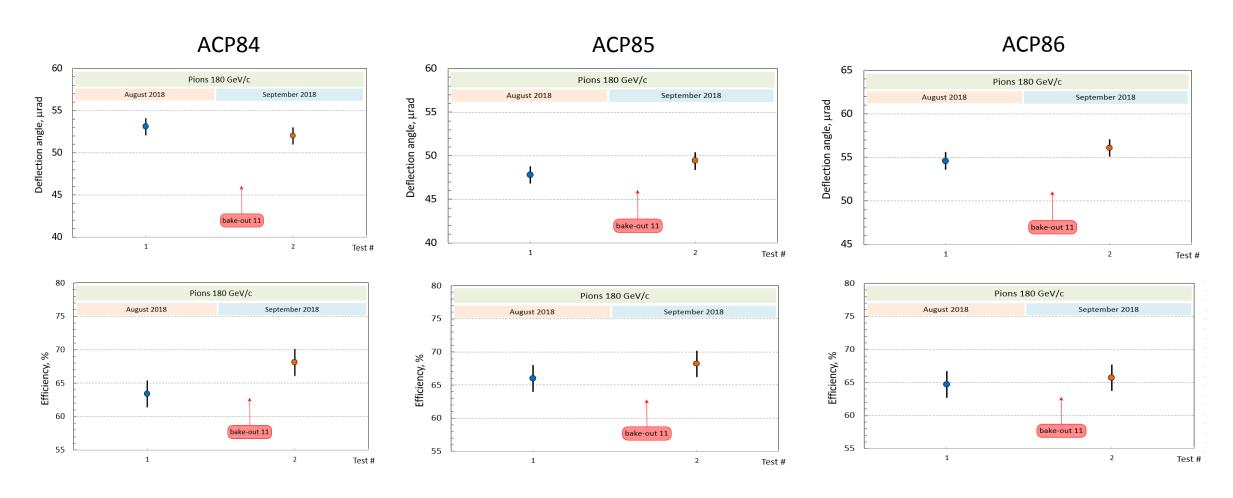
TCP76 – installed into LHC in February, 2018

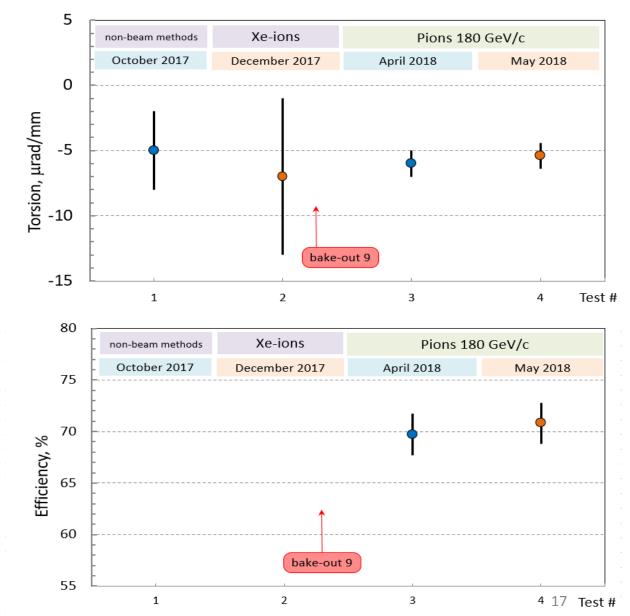


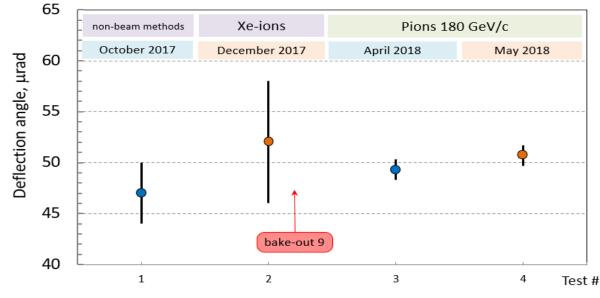

	Crystal	Runs	Deflection angle, urad ± 1 urad	Efficiency, % ±3 mm Y pos. cut ±8 urad X ang. cut Pions 180 GeV/c	Torsion urad/mm ± 1 urad/mm	Stability at 250 °C
TCP76 TCP77	TCP76	OctDec. 2017	50 ±2	70	0	ОК
	TCP77	Oct.2017-May 2018	50	70	5	OK
ACP	ACP79	April-May 2018	49	69	0	OK
AntiClastic	ACP80	Sept. 2018	57	67	0	OK
PNPI crystal	ACP84	AugSept. 2018	52	68	0	OK
	ACP85	AugSept. 2018	49	68	0	ОК
	ACP86	AugSept. 2018	56	66	0	OK

Stability of TCP79 in time and after bake-out at 250 °C

- The stability of TCP79 was confirmed with 2 bake-outs at 250°C
- The stability in time is confirmed during April-September 2018




Stability in time and after bake-out at 250 °C


• The stability of ACP84, ACP85, APC86 was confirmed with 1 bake-out at 250°C during August-September 2018

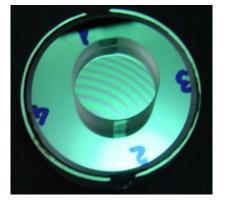
Stability of TCP77 in time and after bake-out at 250 °C

 Despite non-zero torsion TCP77 was tested with Xe-ion and pion beam in H8 for stability study

Crystal orienting with X-rays

Grinding

Titanium holder production


Visual check

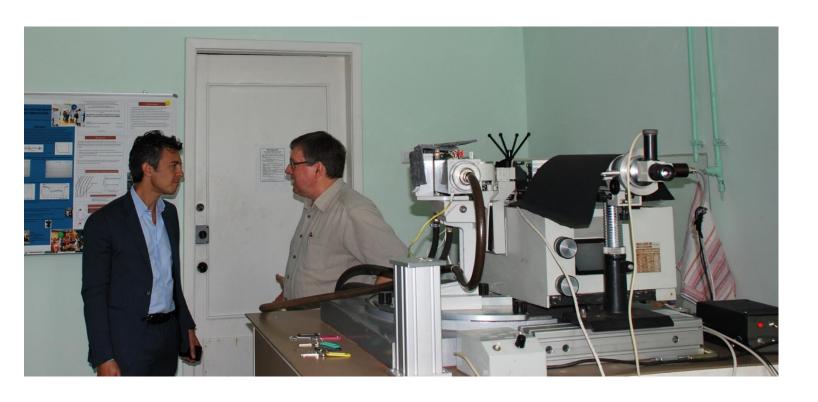
Surface check

Shape check

Angle_between_crystal_faces check



Miscut check



Flatness check

X-test station

Thank you for attention!

