

"Overview of crystal performance at SPS-H8"

HL-LHC Crystal Collimation Day

CERN, Switzerland (19 October 2018)

Marco Garattini

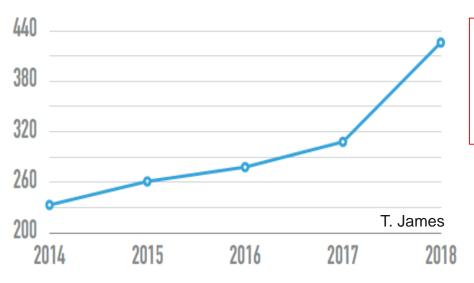
CERN / Imperial College London

UA9 Collaboration

19/10/2018

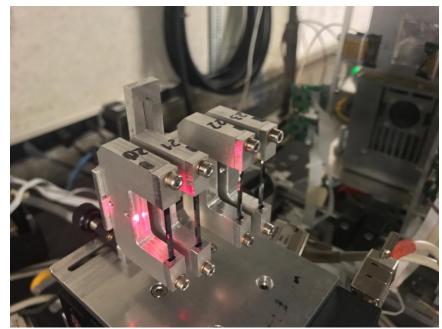
HL-LHC Crystal Collimation Day, CERN

1



- General overview since 2012
- UA9 experimental set-up in SPS-H8
- Measurements methods and procedures
- LHC crystals results
- Inelastic Nuclear Interaction studies
- Hi-dose irradiated crystals tests
- Conclusions

H8 evolution (2012-2018)


DATA COLLECTED (GB) / BEAM DAY

- More than 250 crystal measurements
- More than 190 LHC crystals measurements
- More than 60 single LHC crystals tested
- More than 15 publications
- More than 20 publications pending
- 1 Ph.D thesis
- 4 Master thesis

In 2012: ~ 2 crystals per day

In 2018: ~ 10 crystals per day !!!

UA9 Experimental apparatus at the H8 SPS extraction line

High rate and high angular resolution beam telescope based on CMS Tracker HW&SW

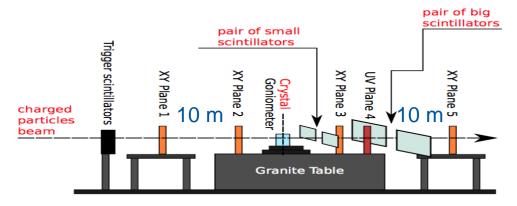
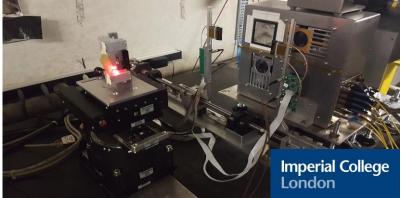


FIG. 1: Experimental layout in the H8 beam line.

Main steps in the characterization of bent crystals:


- 1. Alignment run: only the tracking stations are in the beam line
- 2. Linear scan: the crystal is placed on the beam line
- 3. Angular scan: ~10⁵ events/step are acquired around the channeling orientation looking for CH
- 4. High statistics runs:
 - the crystal is left in the optimal channeling position for hi-stat. of ~16 M events
 - the crystal is left in the AM orientation for hi-stat of ~16 M events

HL-LHC Crystal Collimation Day, CERN

4

M. Pesaresi, T. James, J. Borg

Systematic error < 1µradStatistical error negligible

Beam/Tracker performances

400 AGeV protons \rightarrow Best experimental conditions

- Micro beam: ~10 µrad of divergence, ~1 mm of dimension (1 sigma)
- Tracker resolution (single track): 5.4 µrad (due to multiple scattering)
- Faster and more accurate measurements

180 AGeV pions → Medium experimental conditions

- Normal beam: ~ 30 µrad of divergence, ~ 2 mm of dimension (1 sigma)
- Tracker resolution (single track): 12.3 µrad (due to multiple scattering)
- Slower and less accurate measurements

150 AGeV Xe & Ar ions→ Medium experimental conditions

- Wide beam: ~ 18 µrad of divergence, ~ 2 mm of dimension (not gaussian)
- Tracker resolution (single track): 7.8 µrad (due to multiple scattering)
- Contaminated beam
- Slower and less accurate measurements

30 AGeV Pb ions & 40 AGeV Xe ions → Extreme conditions

- Very wide beam: ~ 50 µrad of divergence, ~ 6 mm of dimension (not gaussian)
- Tracker resolution (single track): 29.6 µrad (due to multiple scattering)
- Very contaminated beam and hurtful for the sensors
- Very slow and very inaccurate measurements → too low energy !!!

Off-line analysis procedure (1/2)

- The raw data are reconstructed off-line and converted directly in Root format (~ 12 h per 1 standard LHC crystal measurement)
- 2. The events with incoming and outgoing single tracks with the a common vertex in the crystal are analyzed

Main information in the data:

- Particle impact position (X & Y) on the crystal
- Particle incoming angles $(\Theta_{X_{in}} \& \Theta_{Y_{in}})$ on the crystal
- Particle outgoing angles $(\Theta_{X_{out}} \otimes \Theta_{Y_{out}})$ from the crystal
- Goniometer angles: $\Theta_{X_{gonio}}, \Theta_{y_{gonio}}$
- 3. The data quality check and a first preliminary analysis is performed by UA9@CERN
- 4. The data are shared with the whole UA9 Collaboration
- 5. The crystal suppliers perform a cross-check analysis
- 6. The final results are discussed inside the UA9 Collaboration
- 7. The final results are reported to CERN

~ 1 month

Off-line analysis procedure (2/2)

STF113 (Angular Cut [urad] = 4) 0.025 5 _ 0.020 0.020 nuts 0.015 6 CH peak .≝ 0.010 0.005 X2 0.000 -60 -40-20 60 80 100 Deflection Angle [urad]

Strip (ST) crystals analysis

- Geometrical cuts: beam/crystal overlapping
- . Torsion analysis: torsion estimation
- 3. Torsion masking: before angle and efficiency analysis
- 4. Angular cuts: $\Theta_c \& \Theta_c/2$
- 5. Gaussian fit of the channeling peak: to estimate the angle central value
- 6. Efficiency: events in the CH peak (+/- 3σ) divided by

```
total events
```

Mask the torsion effect

 $\theta_x^{corr} = \theta_x^{in} - (t(y) \cdot d_{0y} + \Theta_x^{off})$

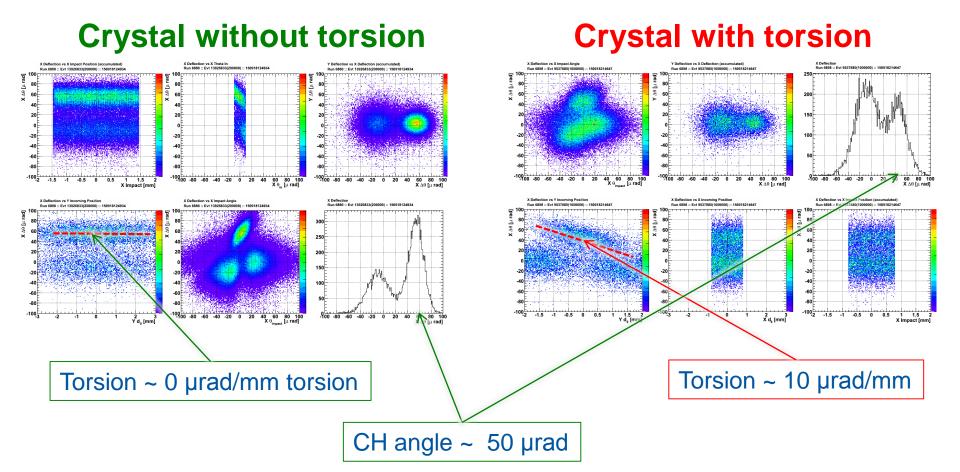
Torsion

(111)

Quasi-mosaic (QM) crystals analysis

- The procedure is similar, except for the fact that QM crystals do not have torsion, but are affected by quasi-mosaic curvature horizontally.
- So the points 2 & 3 are replaced by this special masking before points 5 & 6

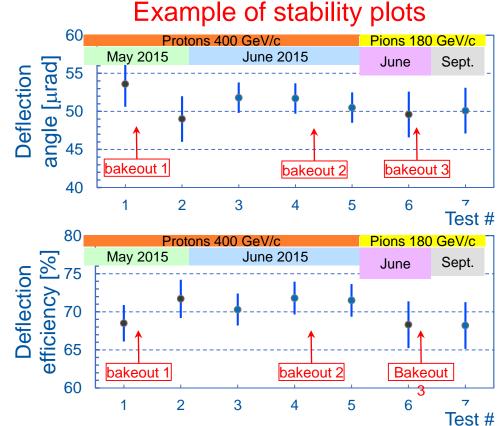
Evaluate the channeling efficiency


 ${}^{\mathrm{ut}} = rac{N_{\mathrm{ch}}^{- heta_{\mathrm{x}}^{\mathrm{cut}} < heta_{\mathrm{x}}^{\mathrm{in}} < heta_{\mathrm{x}}^{\mathrm{cut}}}}{N^{- heta_{\mathrm{x}}^{\mathrm{cut}} < heta_{\mathrm{x}}^{\mathrm{in}} < heta_{\mathrm{x}}^{\mathrm{cut}}}}$

On-line analysis

In only 2 h of data taking is already possible on-line to have a preliminary information about the quality of the crystal, in terms of CH angle and torsion

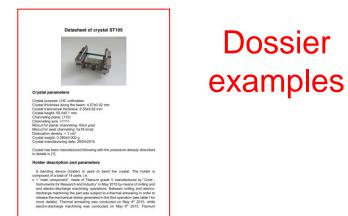
19/10/2018


Performance stability

Bake out of crystals

- Heating is performed at CERN by vacuum team
- Typical LHC bake out procedure is implemented
- Ramp up, ramp down is 50 °C/hour
- 24 hours at $T_{max} = 250 \ ^{\circ}C$

19/10/2018



Each characterized crystal has a detailed dossier, updated step by step with the following information:

- Picture and identification code
- Crystal characteristics: dimensions, nominal angle, material, etc...
- Holder characteristics: dimensions, material, weight, etc...
- **Production specifications**
- X-ray &/or optical measurements: bending radius (angle), torsion
- Beam measurements: angle, efficiency, torsion
- Historical report: locations, treatments, modifications, stability, etc...

Dossier

LHC crystal results (1/2)							
Crystals fully tested with 180 GeV pions					Preliminary results		
Name	Supplier	Angle [µrad]	Efficiency at Θ _c /2	Torsion [µrad/mm]	Stability * ∆Θ [µrad]	Tests status	
QMP46v2	PNPI	56 ± 1	68 ± 2 %	0 ± 1	0 ± 1	Fully tested *	
QMP54	PNPI	56 ± 1	68 ± 2 %	0 ± 1	- 1 ± 1	Fully tested	
ACP79	PNPI	49 ± 1	69 ± 2 %	0 ± 1	- 1 ± 1	Fully tested	
ACP77	PNPI	50 ± 1	70 ± 2 %	5 ± 1	- 2 ± 1	Fully tested	
ACP84	PNPI	52 ± 1	68 ± 2 %	0 ± 1	- 2 ± 1	Fully tested	
ACP85	PNPI	49 ± 1	68 ± 2 %	0 ± 1	0 ± 1	Fully tested	
ACP86	PNPI	56 ± 1	66 ± 2 %	0 ± 1	0 ± 1	Fully tested	
STF117	INFN-Fe	50 ± 1	66 ± 2 %	- 5 ± 1	- 1 ± 1	Fully tested	
STF118	INFN-Fe	53 ± 1	64 ± 2 %	- 6 ± 1	0 ± 1	Fully tested	
STF119	INFN-Fe	52 ± 1	66 ± 2 %	5 ± 1	0 ± 1	Fully tested	
STF121	INFN-Fe	48 ± 1	67 ± 2 %	5 ± 1	1 ± 1	Fully tested	
STF122	INFN-Fe	46 ± 1	66 ± 2 %	- 14 ± 1	2 ± 1	Fully tested	
STF123	INFN-Fe	52 ± 1	62 ± 2 %	- 13 ± 1	0 ± 1	Fully tested	
* Fully tested: tested before and after a CEPN bake out							

* Fully tested: tested before and after a CERN bake out

* The stability is controlled after the CERN bake-out at 250 °C

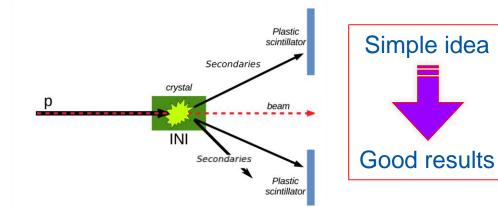
	LHC s partially	(2/2) Preliminary results				
Name	Supplier	Angle [µrad]	Efficiency at Θ _c	Torsion [µrad/mm]	Stability	Tests status
STF124	INFN-Fe	49 ± 1	67 ± 2 %	0 ± 1	-	Test ongoing *
STF125	INFN-Fe	50 ± 1	65 ± 2 %	3 ± 1	-	Test ongoing
STF126	INFN-Fe	50 ± 1	66 ± 2 %	3 ± 1	-	Test ongoing
ACP80	PNPI	57 ± 1	67 ± 2 %	0 ± 1	-	Test ongoing

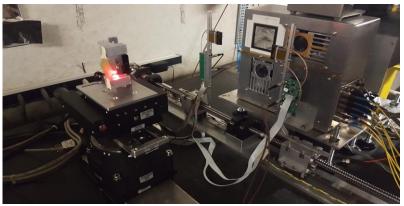
* Test ongoing: tested only before the CERN bake out

Crystals installed in LHC

Name	Supplier	Angle [µrad]	Efficiency at Θ _c	Torsion [µrad/mm]	Location	Installation status	
STF75	INFN-Fe	63 ± 2	Not meas.	-	B1H	2014-present	
QMP34	PNPI	40 ± 2	Not meas.	0 ± 1	B1V	2014-present	
QMP52	PNPI	54 ± 1	64% ± 2%	0 ± 1	B2V	2017-present	
QMP53	PNPI	56 ± 1	71% ± 2 %	0 ± 1	B2H	2017-2018	
TCP76	PNPI	50 ± 2	70% / 55% *	0 ± 1	B2H	2018-present	
* Efficiency with 40 AGeV/ Xenon ions							

* Efficiency with 40 AGeV Xenon ions

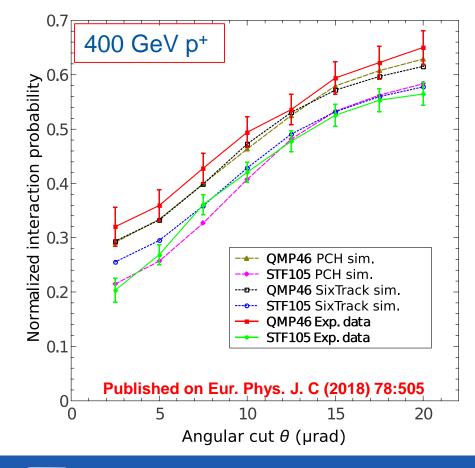



I.N.I. studies (1/3) (Inelastic Nuclear Interactions)

H8 Apparatus:

the idea is to perform a coincidence measurement integrated in the Tracker DAQ

- Two mini scintillators (5x10x25 mm³): to cut the background stream along the line
- Fast coincidence (gate ~ 2 ns): to register "only" I.N.I. correlated with a single track
- Scintillators acquisition is linked to the Tracker acquisition:
 - Selection of events only with single incoming tracks and multiple outgoing tracks
 - Very precise and simple off-line analysis: it is possible to apply geometrical and angular cuts, filtering only the interesting events
- Systematic measurements on any kind of crystal: in parallel with crystal bending angle and efficiency measurements



I.N.I. studies (2/3)

I.N.I. studies for LHC collimation purposes:

comparison between the two kinds of crystals successfully tested in LHC: for CH strip crystals use (110) planes, instead quasi-mosaic uses (111) ones

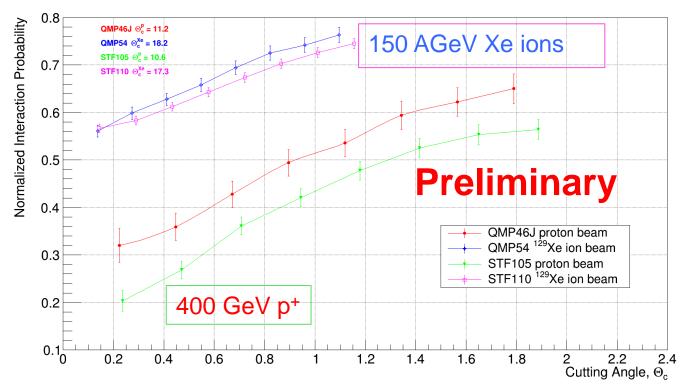
I.N.I. reduction factor in CH w.r.t. AM orientation (within $\Theta_c/2 = 5 \mu rad$):

Strip: R_f ~3.7

Quasi-mosaic: R_f ~2.8

This difference is due to the different average planes distance

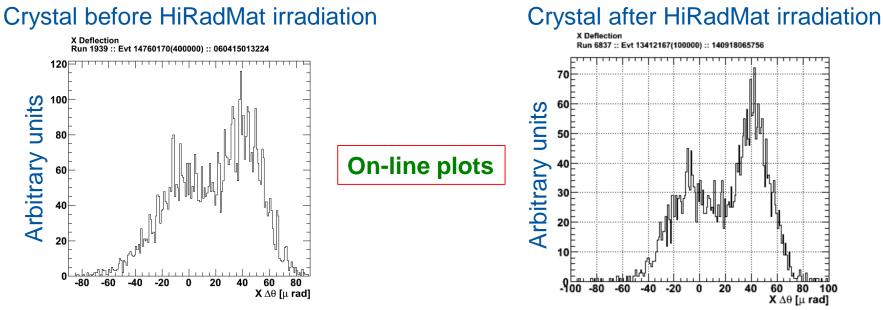
Strip \rightarrow 1.92 Å Quasi-mosaic \rightarrow 1.57 Å


Very good agreement both with Planar Channeling full analytical and SixTrack Monte Carlo simulations

I.N.I. studies (3/3)

I.N.I. studies for LHC collimation purposes:

Strip/quasi-mosaic comparison for Xenon ion beam PCH/AM


I.N.I. studies are fundamental to estimate the LHC losses at the crystal position and as benchmark for simulations

19/10/2018

High-dose irradiated crystals

 Test of 2 LHC crystals irradiated in HiRadMat at CERN in 2017 (288 bunches at 450 GeV)

- Test of 8 crystal samples irradiated with 5 x 10²⁰ fast neutrons (E> 1 MeV)

Comparison with the measurements performed before the irradiation:

• the analysis is ongoing, but in the on-line plots no evidence of relevant changes in efficiency and channeling angle.

Conclusions

- The UA9 setup in H8 has became not only a physics research and R&D laboratory, but also a very efficient crystal characterization facility
- The first "industrial" procedure for LHC crystals beam characterization has been realized: measurements, data analysis, quality check
- It is possible to measure: bending angle, torsion, efficiency and I.N.I. rate
- 11 LHC Strip crystals have been fully characterized and can be exposed to selection criteria
- 4 crystals need further characterizations
- After more than 250 crystal measurements the know how, the method and all the procedures are ready to be "exported" outside CERN during LS2

Thank you for *your attention !* Ľ thanks a lot to all the colleagues strongly involved in H8 !!!

19/10/2018

HL-LHC Crystal Collimation Day, CERN

Marco Garattini