2018-10-12

GUIDING NEW PHYSICS SEARCHES WITH UNSUPERVISED LEARNING [DS, Jacques - 1807.06038]

Andrea De Simone

andrea.desimone@sissa.it

Searches for New Physics Beyond the Standard Model have been negative so far...

MAYBE:

1. New Physics (NP) is not accessible by LHC

new particles are too light/heavy or interacting too weakly

2. We have not explored all the possibilities

new physics may be buried under large bkg or hiding behind unusual signatures

"Don't want to miss a thing" (in data)

closer look at current data get ready for upcoming data from next run

Model-independent search

searches for specific models may be:

- time-consuming
- insensitive to unexpected/unknown processes

Want a statistical test for NP which is:

1. model-independent:

no assumption about underlying physical model to intepret data

more general

2. non-parametric:

compare two samples as a whole (not just their means, etc.)

fewer assumptions, no max likelihood estim.

3. un-binned:

high-dim feature space partitioned without rectangular bins retain full multi-dim info of data

1. Statistical test of dataset compatibility

- Nearest-Neighbors Two-Sample Test
- Identify Discrepancies
- Include Uncertainties

2. Applications to High-Energy Physics

1. Statistical test of dataset compatibility

Nearest-Neighbors Two-Sample Test

Identify Discrepancies

Include Uncertainties

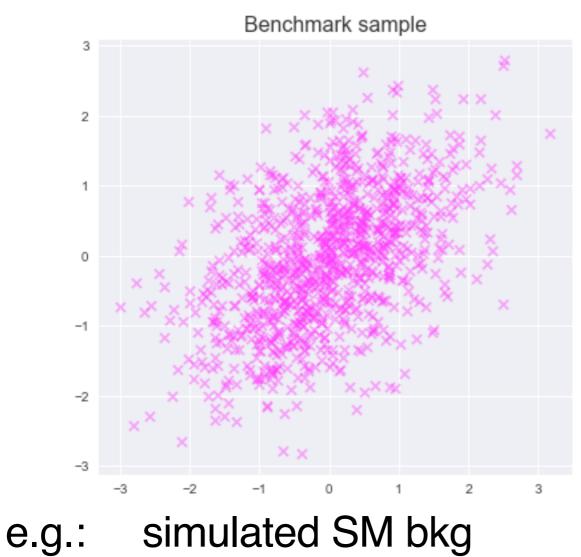
2. Applications to High-Energy Physics

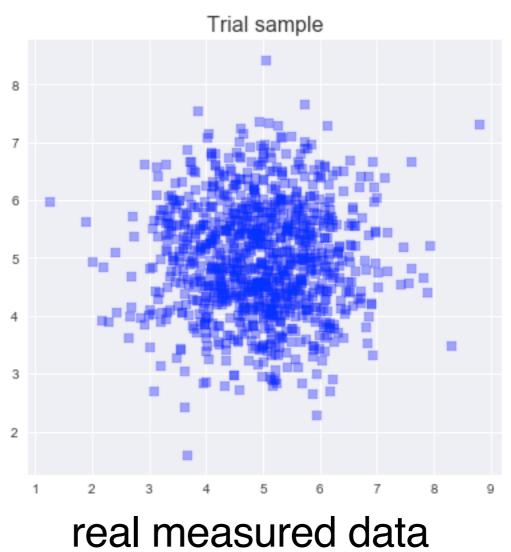
[a.k.a. "homogeneity test"]

Two sets:
$$\mathcal{T} = \{x_1, \dots, x_{N_T}\} \stackrel{\text{iid}}{\sim} p_T$$
Benchmark: $\mathcal{B} = \{x'_1, \dots, x'_{N_B}\} \stackrel{\text{iid}}{\sim} p_B$

$$oldsymbol{x}_i,oldsymbol{x}_i'\in\mathbb{R}^L$$

probability distributions p_{B} , p_{T} unknown



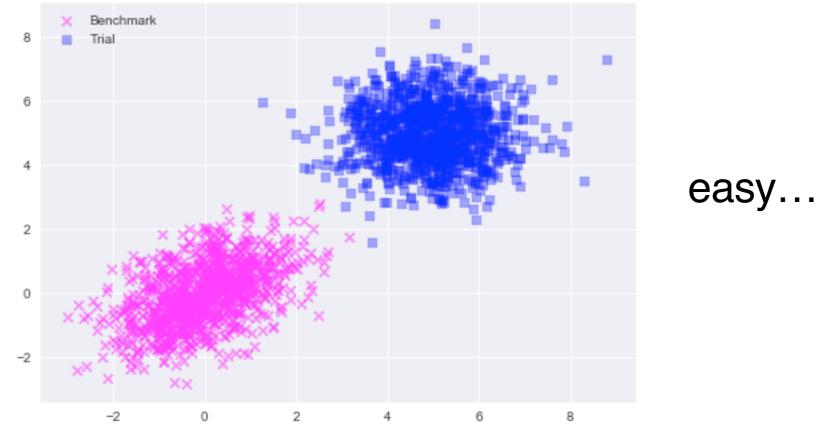


Two sets:

Trial:
$$\mathcal{T} = \{ \boldsymbol{x}_1, \dots, \boldsymbol{x}_{N_T} \} \stackrel{\text{iid}}{\sim} p_T$$
 $\boldsymbol{x}_i, \boldsymbol{x}'_i \in \mathbb{R}^D$ Benchmark: $\mathcal{B} = \{ \boldsymbol{x}'_1, \dots, \boldsymbol{x}'_{N_B} \} \stackrel{\text{iid}}{\sim} p_B$ $\boldsymbol{x}_i, \boldsymbol{x}'_i \in \mathbb{R}^D$

probability distributions p_B, p_T unknown

Are *B*,*T* drawn from the same prob. distribution?



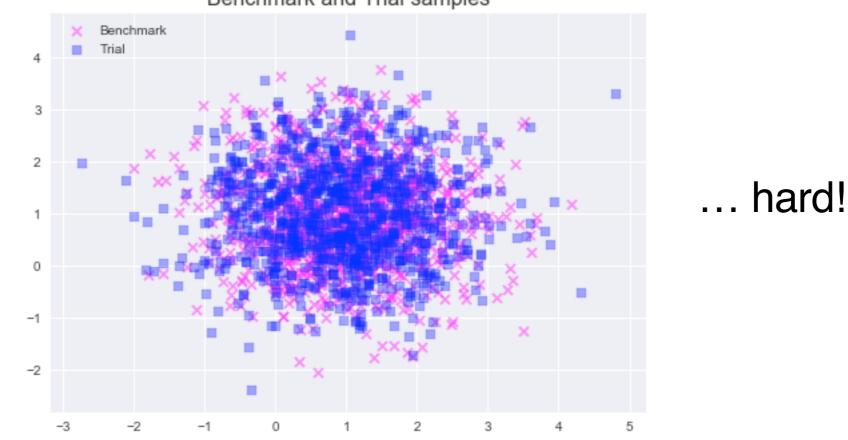
Benchmark and Trial samples

Two sets:

Trial:
$$\mathcal{T} = \{x_1, \dots, x_{N_T}\} \stackrel{\text{iid}}{\sim} p_T$$
 $x_i, x'_i \in \mathbb{R}^D$ Benchmark: $\mathcal{B} = \{x'_1, \dots, x'_{N_B}\} \stackrel{\text{iid}}{\sim} p_B$ $x_i, x'_i \in \mathbb{R}^D$

probability distributions p_{B} , p_{T} unknown

Are *B*,*T* drawn from the same prob. distribution?



Benchmark and Trial samples

1. Density Estimator

reconstruct PDFs from samples

2. Test Statistic (TS)

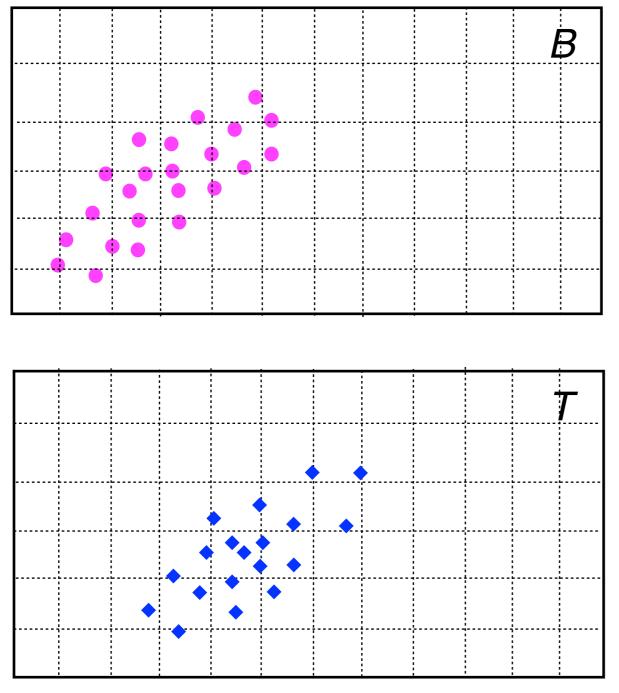
measure "distance" between PDFs

3. TS distribution

→ associate probabilities to TS under null hypothesis H_0 : $p_B = p_T$

4. *p* -value

 \rightarrow accept/reject H_0



Divide the space in squared bins?

- easy
 can use simple statistics (e.g. χ^2)
- hard/slow/impossible in high-D

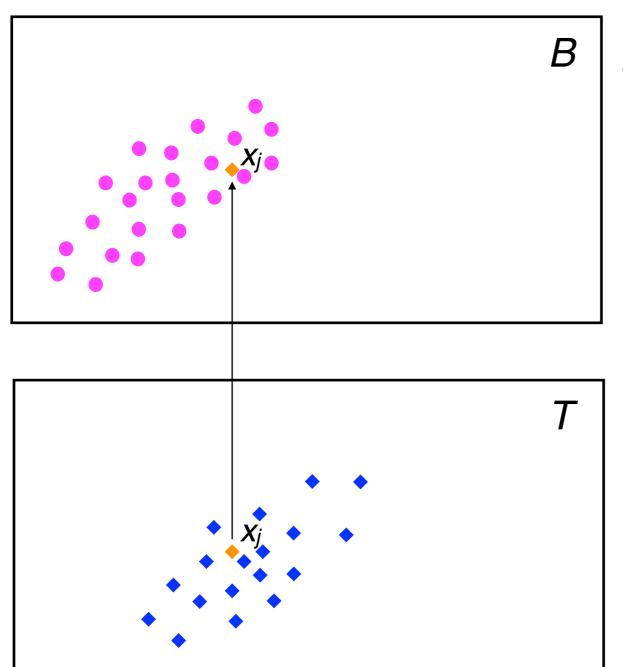
Need un-binned multivariate approach

Find PDFs *estimators*: $\hat{p}_B(\boldsymbol{x}), \hat{p}_T(\boldsymbol{x})$ e.g. based on densities of points:

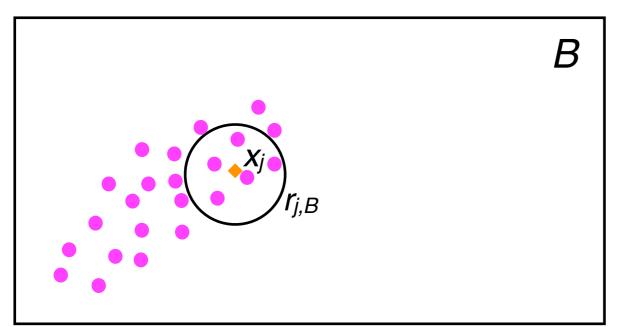
$$\hat{p}_{B,T}(\boldsymbol{x}) = \frac{\rho_{B,T}(\boldsymbol{x})}{N_{B,T}}$$

Nearest Neighbors!

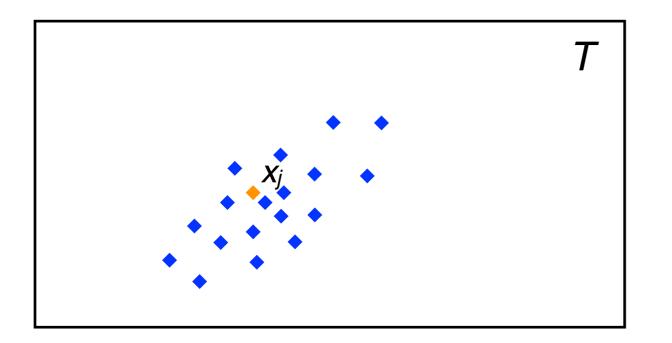
```
[Schilling - 1986][Henze - 1988]
[Wang et al. - 2005,2006]
[Dasu et al. - 2006][Perez-Cruz - 2008]
[Sugiyama et al. - 2011][Kremer et al, 2015]
```

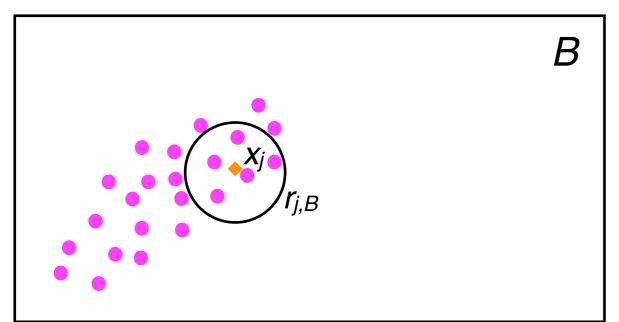


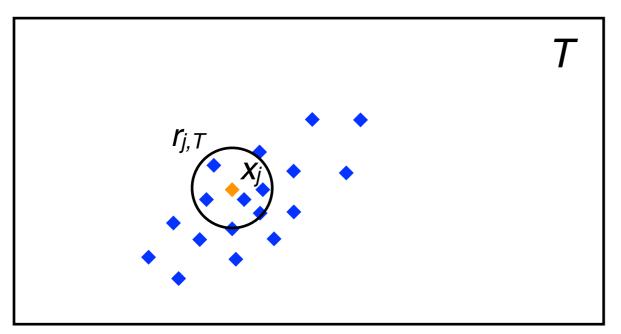
- Fix integer K.
- Choose query point *x_j* in *T* and draw it in *B*.



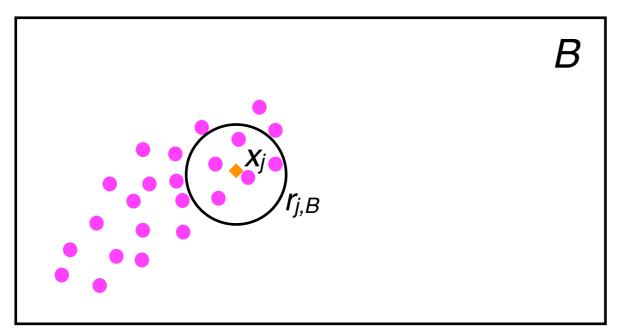
- Fix integer K.
- Choose query point *x_j* in *T* and draw it in *B*.
- Find the distance $r_{j,B}$ of the Kth-NN of x_j in *B*.

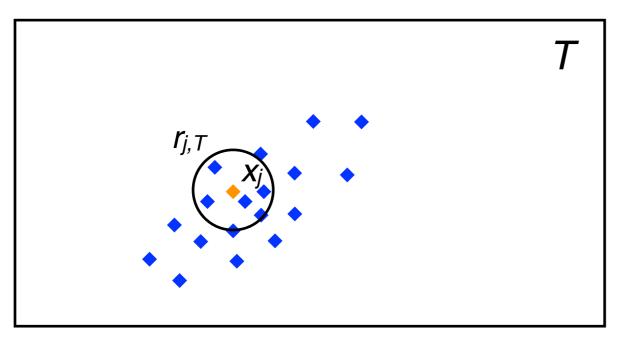






- Fix integer K.
- Choose query point *x_j* in *T* and draw it in *B*.
- Find the distance $r_{j,B}$ of the Kth-NN of x_j in *B*.
- Find the distance $r_{j,T}$ of the Kth-NN of x_j in *T*.





- Fix integer K.
- Choose query point *x_j* in *T* and draw it in *B*.
- Find the distance *r_{j,B}* of the Kth-NN of *x_j* in *B*.
- Find the distance $r_{j,T}$ of the Kth-NN of x_j in *T*.
- Estimate PDFs:

 $\hat{p}_T(\boldsymbol{x}_j)$

$$\hat{p}_B(oldsymbol{x}_j)$$
 :

$$= \frac{K}{N_B} \frac{1}{\omega_D r_{j,B}^D}$$
$$= \frac{K}{N_T - 1} \frac{1}{\omega_D r_{j,T}^D}$$

> 2. Test Statistic

- Measure of the "distance" between 2 PDFs
- Define **Test Statistic**:
 (detect under-/over-densities)

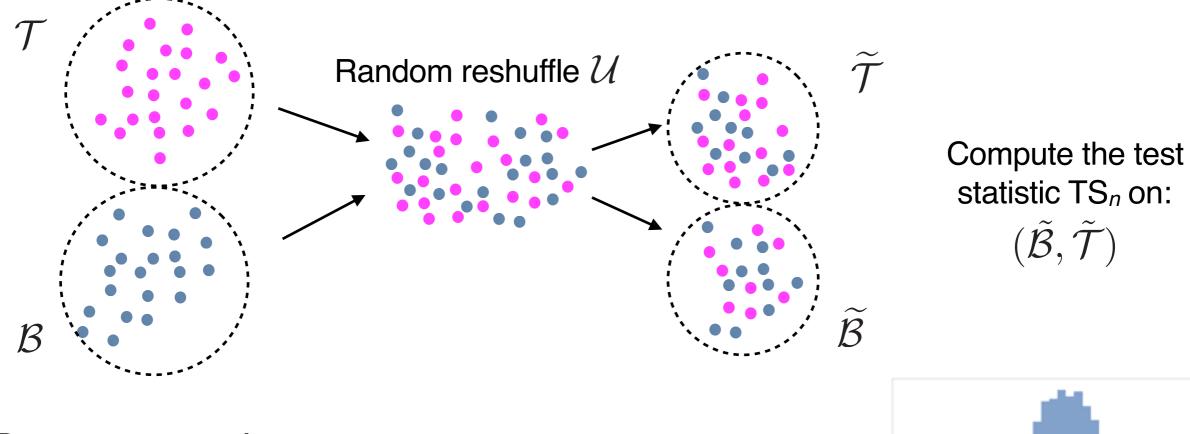
$$TS(\mathcal{B}, \mathcal{T}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \log \frac{\hat{p}_T(\boldsymbol{x}_j)}{\hat{p}_B(\boldsymbol{x}_j)}$$

- Related to Kullback-Leibler divergence as: $TS(\mathcal{B}, \mathcal{T}) = \hat{D}_{KL}(\hat{p}_T || \hat{p}_B)$ $D_{KL}(p || q) \equiv \int_{\mathbb{R}^D} p(\boldsymbol{x}) \log \frac{p(\boldsymbol{x})}{q(\boldsymbol{x})} d\boldsymbol{x}$
- From NN-estimated PDFs: $TS_{obs} = \frac{D}{N_T} \sum_{j=1}^{N_T} \log \frac{r_{j,B}}{r_{j,T}} + \log \frac{N_B}{N_T 1}$
- **Theorem:** this estimator converges to $D_{KL}(p_B || p_T)$, in large sample limit [Wang et al. - 2005,2006]

> 3. Test Statistic Distribution

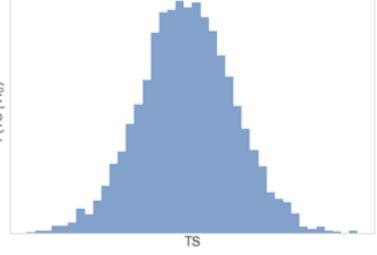
How is TS distributed? **Permutation test!**

Assume $p_B = p_T$. Union set: $\mathcal{U} = \mathcal{T} \cup \mathcal{B}$



Repeat many times.

Distribution of TS under H_0 : $f(TS|H_0) \leftarrow {TS_n}^{\sharp}$ [asymptotically normal with zero mean]

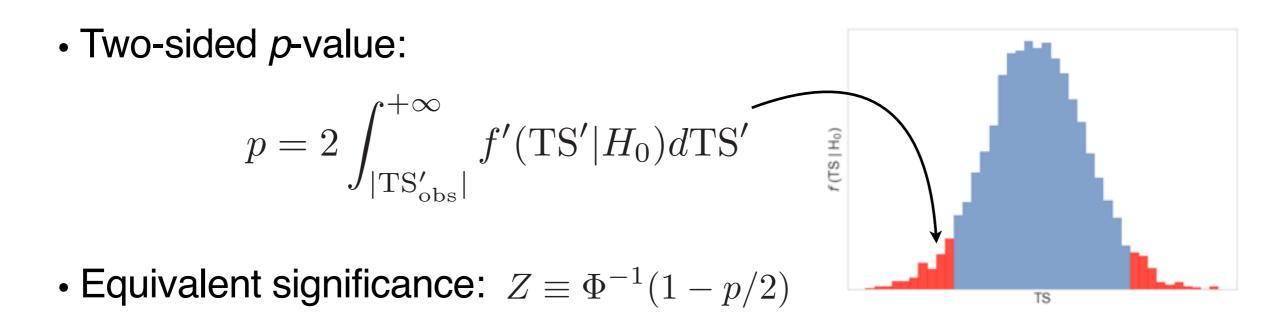


> 4. p-value

• $\hat{\mu}, \hat{\sigma}$: mean, variance of TS distribution $f(TS|H_0)$

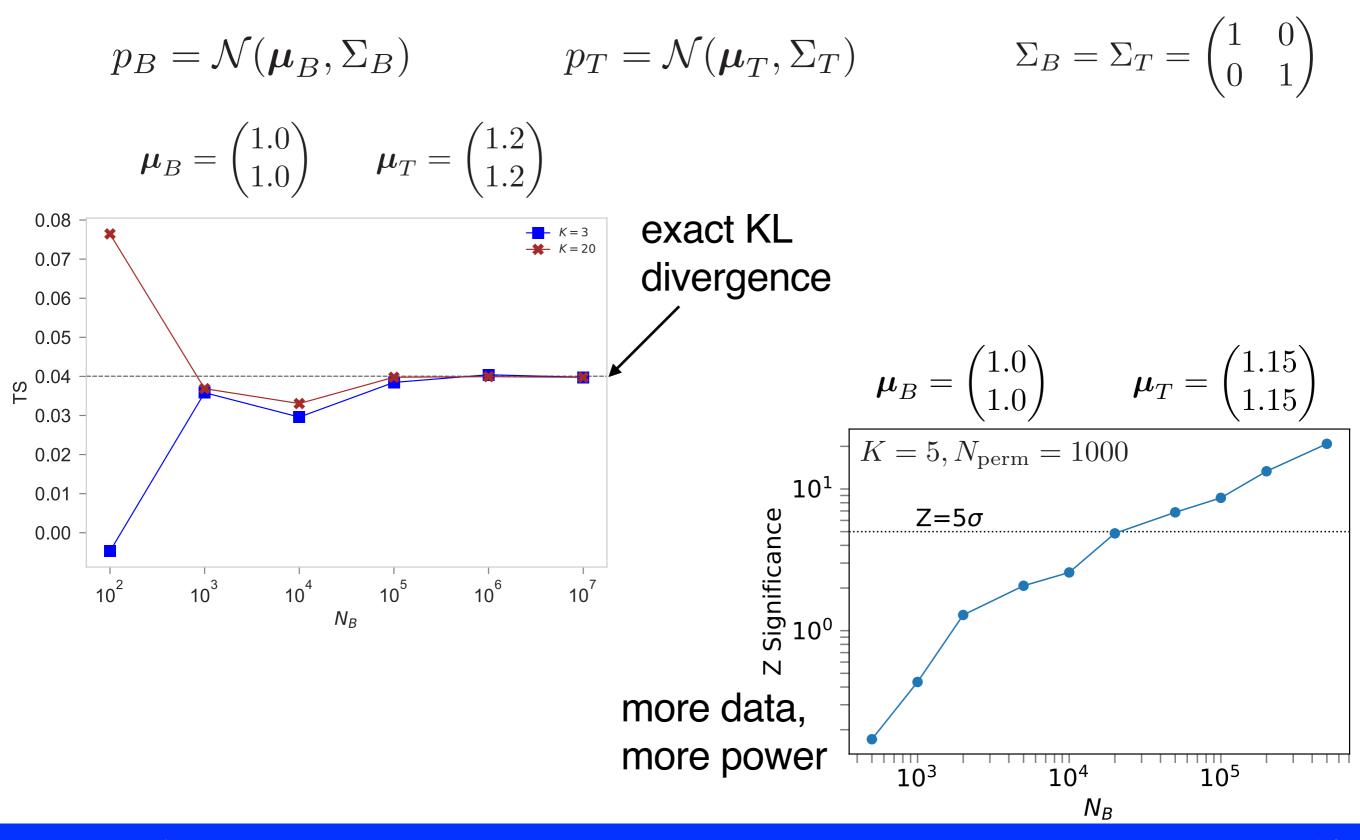
• Standardize the TS:
$$TS \rightarrow TS' \equiv \frac{TS - \hat{\mu}}{\hat{\sigma}}$$

• TS' distributed according to $f'(TS'|H_0) = \hat{\sigma}f(\hat{\mu} + \hat{\sigma}TS'|H_0)$



A. De Simone

> 2D Gaussian Example



A. De Simone

> NN2ST: Summary

INPUT:

Trial sample: $\mathcal{T} = \{x_1, \dots, x_{N_T}\} \stackrel{\text{iid}}{\sim} p_T$ Benchmark sample: $\mathcal{B} = \{x'_1, \dots, x'_{N_B}\} \stackrel{\text{iid}}{\sim} p_B$ K:number of nearest neighborsNperm:number of permutations

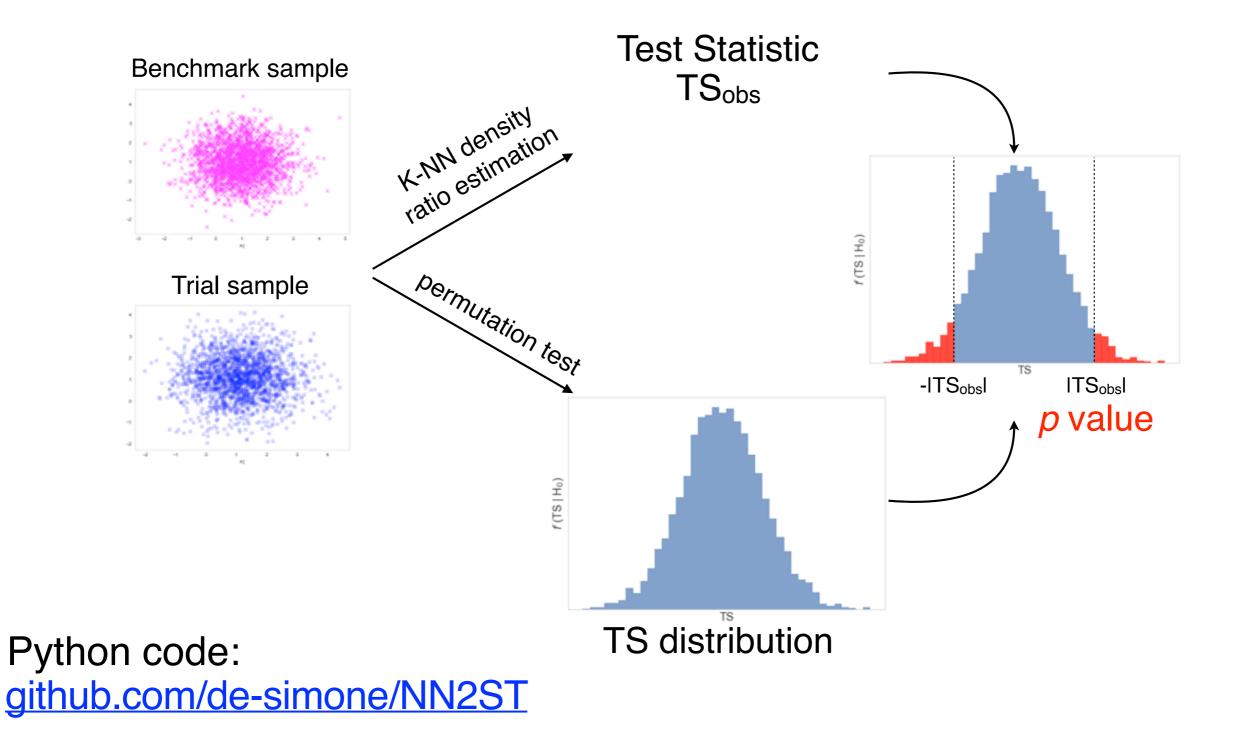
 $oldsymbol{x}_i,oldsymbol{x}_i'\in\mathbb{R}^D$ $oldsymbol{p}_{\mathcal{B}},oldsymbol{p}_{\mathcal{T}}$ unknown

OUTPUT:

p-value of the null hypothesis H_0 : $p_B = p_T$

[check compatibility between 2 samples]

> NN2ST: Summary



1. Statistical test of dataset compatibility

Nearest-Neighbors Two-Sample Test

Identify Discrepancies

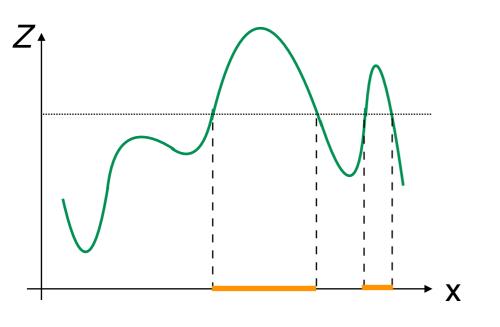
Include Uncertainties

2. Applications to High-Energy Physics

> Where are the discrepancies?

Bonus: Characterize regions with significant discrepancies

1. "Score" field over T: $Z(x_j) \equiv \frac{u(x_j) - \bar{u}}{\sigma_u}$

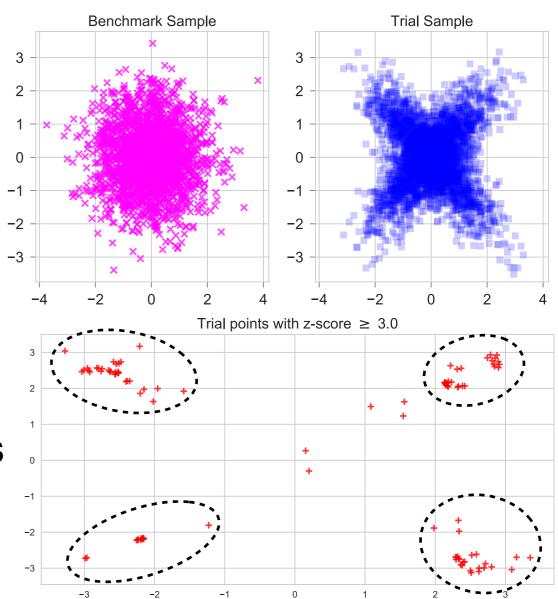


2. Identify points where Z(x) > cThey contribute the most to large TS_{obs} \rightarrow high-discrepancy (anomalous) regions

3. Apply a clustering algorithm to group them

with:
$$u(\boldsymbol{x}_j) \equiv \log \frac{r_{j,B}}{r_{j,T}}$$

TS_{obs} = $D \bar{u} + \text{const}$



1. Statistical test of dataset compatibility

Nearest-Neighbors Two-Sample Test

Identify Discrepancies

Include Uncertainties

2. Applications to High-Energy Physics

> Sample Uncertainties

How to include sample uncertainties?

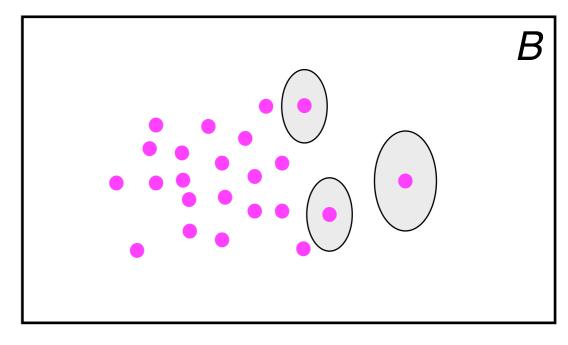
1. Model feature uncertainties

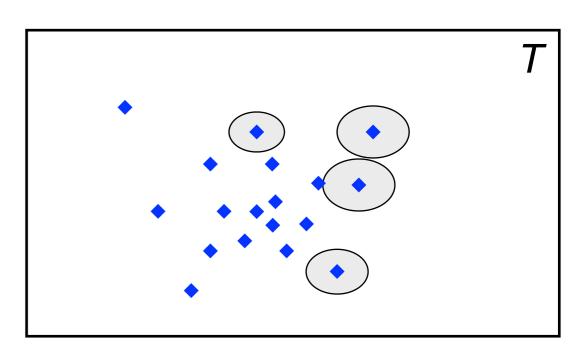
 $F_{\mathcal{B}}(\mathbf{x}), F_{\mathcal{T}}(\mathbf{x})$
[e.g. zero-mean gaussians]

2. New samples by adding random noise sampled from $F_{B,T}$:

 $\mathcal{T}_u = \{\boldsymbol{x}_i + \Delta \mathbf{x}_i\}_{i=1}^{N_T}$ $\mathcal{B}_u = \{\boldsymbol{x}'_i + \Delta \mathbf{x}'_i\}_{i=1}^{N_B}$

- 3. Compute TS on new samples $TS_u \equiv TS(\mathcal{B}_u, \mathcal{T}_u) = TS_{obs} + U$
- 4. Repeat many times to reconstruct f(U)

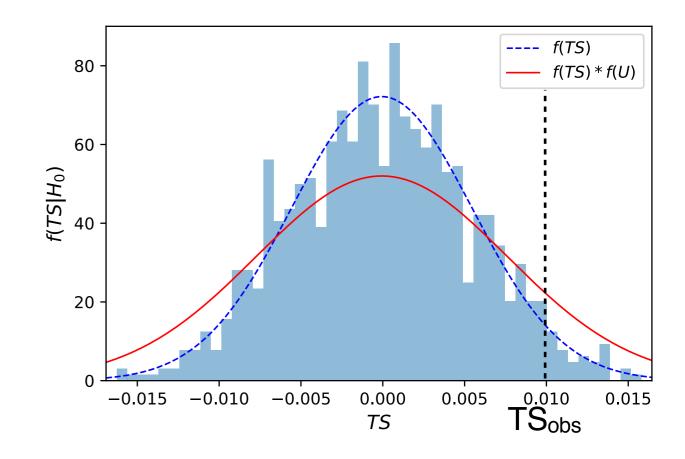




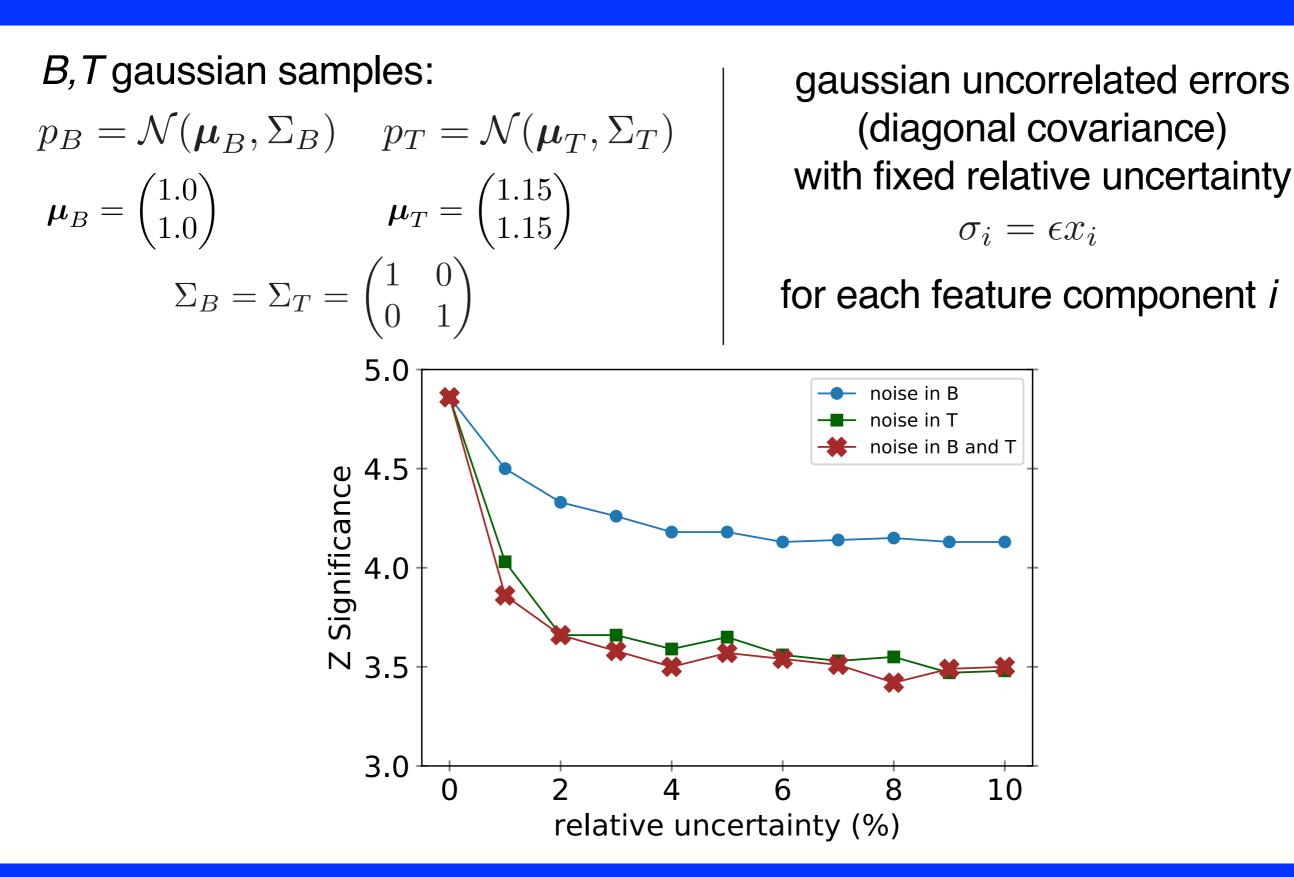
> Sample Uncertainties

How to include sample uncertainties?

- $f(TS_u)$ is a convolution: $f(TS_u|H_0) = f(TS|H_0) * f(U)$ $f(TS_u)$ more spread than f(TS)
- *p*-value computed from f(TS_{*u*})
- weaker significance, power degradation



> 2D Gaussian with Uncertainties



> NN2ST: Summary

✓ general, model-independent

- fast, no optimization
 - [*N_{B,T}*=20k, *K*=5, *N_{perm}*=1k, *D*=2: *t* ~ **2 mins** *N_{B,T}*=20k, *K*=5, *N_{perm}*=1k, *D*=8: *t* ~ **50 mins**]
- sensitive to unspecified signals
- useful when no variable can separate sig/bkg
- helps finding signal regions, optimal cuts, …
- flexible to incorporate uncertainties
- need to run for each sample pair
- permutation test is bottleneck

1. Statistical test of dataset compatibility

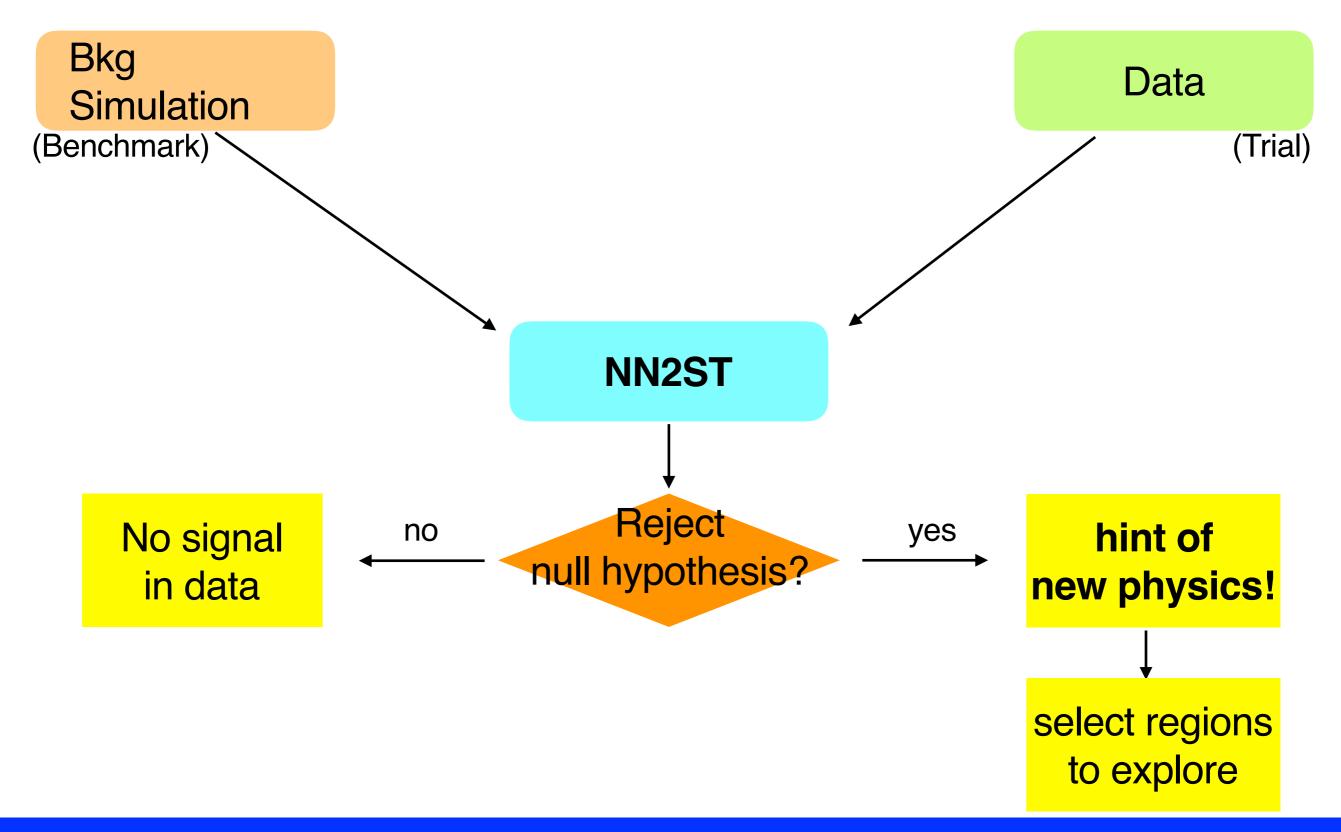
Nearest-Neighbors Two-Sample Test

Identify Discrepancies

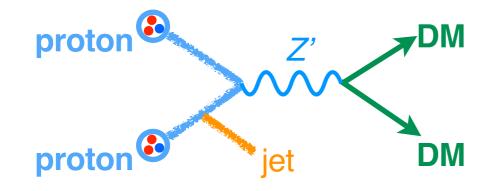
Include Uncertainties

2. Applications to High-Energy Physics

> Our Method



> DM search @ LHC



- "proof-of-principle" study
- bkg: $Z \rightarrow \nu \bar{\nu} + (1,2) j$ ($\sigma_{\rm bkg}$ =202.6 pb) sub-leading bkgs not included
- no full detector effects (generic Delphes profile)

Benchmark: BKG₁ Trials: BKG₂ + SIG K = 5 $N_{perm} = 3000$

DM Mass [TeV]

 $m_{DM} = 100 \text{ GeV}$ DM + Z'm_{Z'} = 1.2, 2, 3 TeV vector mediator $g_{DM} = 1, g_q = 0.1$ $\sqrt{s} = 13 \text{ TeV}$ 1.6 Dijet ATLAS Preliminary July 2018 Dijet vil = 13 TeV, 37.0 fb⁻¹ Phys. Rev. D 96, 052004 (2017) 1.4 Diet TLA 18 = 13 TeV, 29.3 fb arXiv:1804.03496 1.2 E^{miss}+X E. +7 15 = 13 TeV, 36.1 fb/ Eur. Phys. J. C 77 (2017) 393 1는 +iet vi = 13 TeV, 36.1 fb JHEP 1801 (2018) 129 0.8 Dilepton vs = 13 TeV, 36.1 fb⁻¹ 0.6 JHEP 10 (2017) 182 Dijet 0.4 Vector mediator, Dirac DM 0.2 = 0.1, g = 0.01, g = 1All limits at 95% CL 0.5 1.5 2.5 3.5 з Mediator Mass [TeV]

8 features:

- n. of jets
- p_T, η of 2 leading jets
- E_T^{miss}, H_T

$$\Delta \phi_{E_T^{\mathrm{miss}}, j_1}$$

> DM search @ LHC

- B: BKG₁ (20k events)
- T1: BKG₂ (20k events) + SIG₁ (2010 events)
- T2: BKG₂ (20k events) + SIG₂ (375 events)
- T3: BKG_2 (20k events) + SIG_3 (59 events)

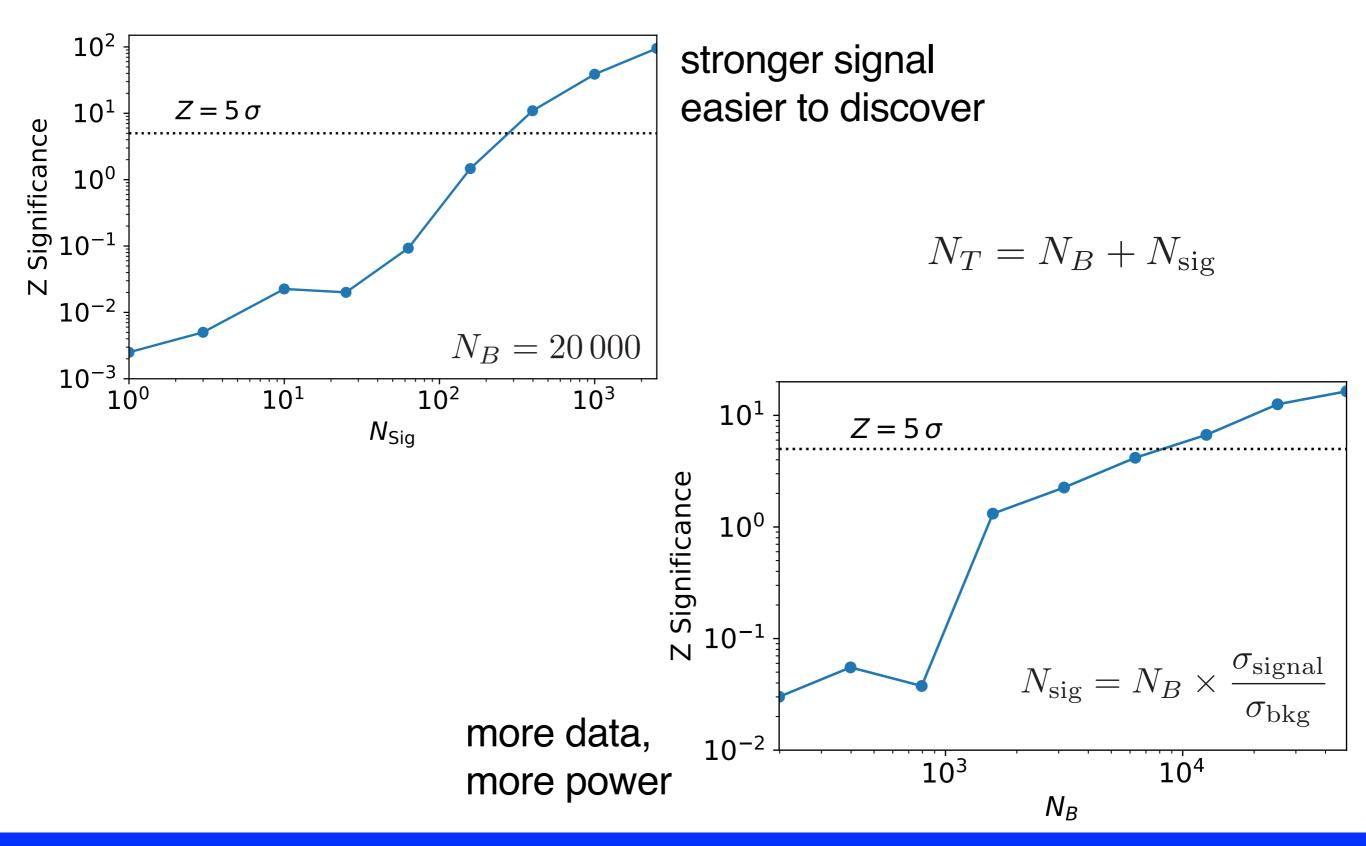
$$N_{\rm sig} = N_B \times \frac{\sigma_{\rm signal}}{\sigma_{\rm bkg}}$$

Sample	M _Z ,	σ signal	Z no uncert.	Z 10% rel uncert.
T1	1.2 TeV	20.4 pb	40 <i>o</i>	26 σ
T2	2 TeV	3.8 pb	13 <i>σ</i>	12 <i>σ</i>
T3	3 TeV	0.6 pb	2.7 σ	2.5 <i>σ</i>

still not real-world

- systematics: expect further degradation of results
- the method has value, it is worth exploring

> DM search @ LHC



Directions for future work:

- adaptive choice of K
- identifying discrepant regions in realistic situations (with *Z*-score method)
- validation tool for bkg: compatibility between MC sims. and data in control regions
- scalability
- ... your suggestions?

1. New Statistical Test for BSM Physics

- assess degree of compatibility between 2 samples
- rooted on nearest neighbors, solid math foundations

2. NN2ST as a discovery tool

- powerful and model-independent
- lots of applications

3. NN2ST to guide searches

- identify regions of discrepancies

BACK UP

> Model Selection

how to choose *K*? Model Selection!

True:
$$r(\boldsymbol{x}) = \frac{p_T(\boldsymbol{x})}{p_B(\boldsymbol{x})}$$

Estimated:
$$\hat{r}(\boldsymbol{x}) = \frac{\hat{p}_T(\boldsymbol{x})}{\hat{p}_B(\boldsymbol{x})}$$

Define the mean-square error:

$$L(r, \hat{r}) = \frac{1}{2} \int \left[\hat{r}(\boldsymbol{x}') - r(\boldsymbol{x}') \right]^2 p_B(\boldsymbol{x}') d\boldsymbol{x}'$$

= $\frac{1}{2} \int \hat{r}(\boldsymbol{x}')^2 p_B(\boldsymbol{x}') d\boldsymbol{x}' - \int \hat{r}(\boldsymbol{x}) p_T(\boldsymbol{x}) d\boldsymbol{x} + \frac{1}{2} \int r(\boldsymbol{x}')^2 p_B(\boldsymbol{x}') d\boldsymbol{x}'$

Estimate loss:
$$\hat{L}(r, \hat{r}) = \frac{1}{2N_B} \sum_{\boldsymbol{x'} \in \mathcal{B}} \hat{r}(\boldsymbol{x'})^2 - \frac{1}{N_T} \sum_{\boldsymbol{x} \in \mathcal{T}} \hat{r}(\boldsymbol{x})$$

Select optimal K minimizing the loss.

Alternatively: Point-Adaptive k-NN (PAk) [1802.10549]

A. De Simone