Unfolding with ML using multiple reconstructed variables.

S. Glazov, IML Machine Learning Working Group meeting, 12/10/18.
Unfolding methods

The data unfolding problem:

\[r = Mt \]

- Matrix inversion: \(M^{-1}r = t \).
- Keeping large eigenvalues of \(M \) only: SVD, NIM A372, 496 (1996).
- Regularization using “smoothness” prior \(\tau \) for \(t \) or its derivatives. E.g.: Sov. Math 5, 1035 (1963), NIM 216, 183 (1983).
- Folding methods: fold data multiple times and extrapolate back to zero foldings NIM A701, 17 (2013).
Choice of reconstructed variables for unfolding

- The choice of truth-level definition is connected to the variable used at reconstructed level.

- Usually they are chosen as close as possible to each other, which typically leads to reduced model dependence.

- However in some cases improved resolution may be more important than increased model dependence. Moreover, known explicit model dependence may be preferred if its uncertainty can be estimated in a well-defined way.

- To improve resolution, one may consider using several reco-level variables for unfolding.

- The combination of the information can be non-trivial due to in general non-Gaussian shape of reco. variables: use ML methods for that.
Example 1: η_ℓ distribution

- Excellent resolution for η_ℓ with purity at 90% level for the bin sizes close to optimal in terms of underlying physics (e.g. variation of PDFs).

- → no need to think about extra variables.

arXiv:1612.03016
Example 2: m_W unfolding

- m_W “unfolded” using reco level fits to p_T^ℓ and M_T distributions.
- Reco and unfolded variables are pretty far from each other, this can not be avoided.
- The combination is performed after unfolding, providing extra consistency check.
- Modeling uncertainties have the largest contribution for the result, however they are studied in a systematic way.

arXiv:1701.07240
Example 3: Z_{p_T} and Z_{ϕ^*}

- ϕ_{η}^* and $p_{T\ell\ell}$ variables probe very similar physics, with ϕ_{η}^* having much better detector resolution and $p_{T\ell\ell}$ closer to the underlying physics.

- Additional interest is to probe low p_T region to study location of the peak: resolution is essential.

- → use both variables at reco level to unfold to single p_T. Maybe add $M_{\ell\ell}$ information to the mix, to improve the resolution.

arXiv:1512.02192
A method for ML unfolding

- Determination of the truth-bin using reco-level variables is a classification problem, well suited for ML methods.
- Use 3-layer NN: input later, fully connected layer, and final “categorical” layer with softmax ($f_i(x) = \exp x_i / \sum_{k=1}^{N_{\text{bin}}} \exp x_k$) activation. Use categorical cross entropy as the loss function.

$$H(p, q) = - \sum_{e=1}^{N_{\text{evt}}} \sum_{i}^{N_{\text{bin}}} p_i^e \log q_i^e$$

- → a version of event-level iterative unfolding.
- Implemented in Keras:

```python
model = Sequential()
model.add(Dense(nvar,activation='linear',input_shape=(nvar,1)))
model.add(Dense(kappa*NBins**2,activation='relu'))
model.add(Dense(NBins,activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])
arXiv:1712.01814
```
Test 0: determine the bin boundaries

- Proof of principle test: use single reco-level variable, unfold $f(x) = \sin^2(5x)$ distribution for $0 < x < 1$ using 10 bins.
- Start with no-smearing: the classifier needs to find truth-bin boundaries.
- The test is useful to determine the model topology and tune minimization algorithm.
• Since the method determines effective bin boundaries, it automatically calibrates for reco vs truth mis-calibrations.
• Example: shift reconstructed variable by 0.5 bin width.
Proof of principle example

- Unfolding is done in an iterative procedure: updating the distribution of the truth variable based on previous iteration and re-training.

- Convergence is hard to prove mathematically: use numerical closure tests.

- Add smearing (0.5 bin Gaussian), first test uses truth-distribution as the prior. Use bootstrap method to estimate uncertainties.
Convergence of the method

- Start with the flat prior, observe convergence to the truth distribution after about ten iterations. After that the unfolding starts to oscillate around the minimum.

- More details can be found in https://github.com/aglazov/MLUnfold.git which contains a jupyter notebook (Keras).
The initial iteration of ML unfolding with flat prior acts as “extra smearing” vs reconstructed distribution (similar to iterative Bayesian unfolding).

No bias within uncertainties after 15th iteration.

Purities are at 60% level with exception of the bin at the minimum where the purity is 20% only; the accuracy of the ML-unfolding predictions is about 65%.
Advantage of second variable

- Add second variable:
 - 1st with 0.5-bin Gaussian smearing and +0.5 bin shift;
 - 2nd: with 1.5 bin log-normal smearing and -0.5 bin shift.
- The second variable improves convergence (5 iteration instead of 10), leads to reduction of uncertainty for the first bins.
Discussion

- Selection of the definition at the truth level can be complemented by selection of an optimal reco-level variable.

- The selection of the optimal reco-variable can be performed using ML methods, based on multiple input variables.

- This can be useful in various situations: when the connection with truth is not straightforward due to missing information (e.g. m_W, p_{TW}, y_W); when the resolution is of critical importance (e.g. p_{T_Z} at low p_T); when the full event information may bring additional calibration info (e.g. balance in Z+jet events for jet kinematics).