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W boson

Standard (Reference) Model not guaranteed to fail in
any specific process

BSM guidance has never been that weak!

We should not only be searching for specific BSM signals
[also because model builders’ fantasy is large but finite]

Similar considerations apply to fund. int. phys. in general
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These peculiarities make most standard technigues to
assess data compatibility with Reference fated to fall
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Searching for the Unknown

New Physics Search:

algorithm aimed at discovering data departures from
a given Reference Model

Model-Independent NP Search:

ideally sensitive to “any” NP model, rather than to
specific “BSM” alternatives

Disadvantage: negative M-I searches are not informative
Advantage: might discover model we had not thought of

Important Remark: [not only to please statisticians]
¢ hypothesis test unavoidably requires alternative hypothesis,
or probability model, to compare with

e M-l physically means that the alternative distribution is not
selected as the one predicted by known alternative physics model
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Maximum Likelihood

[J. Neyman and E. S. Pearson, 1933]

Basic idea: f(x;w) =
replace histograms with NN, literally!

nghly motivated attempt:

e NN “effective” unbiased function approximants

NNPDF exploits this virtue since 2002

Often introduced as alternative to histograms to fit distributions
Better dimensionality scaling

—21\/£i,n N(W)—N(R)—Zf(xi;w)

fz;w)

Alternative in parametrised form: n(z|w) =n(z|R)e

Oq
If f piece-wise constant in bins: (D) =2 Z [NQ(R) — 0y + 04 log ]
recover binned histogram test !
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Maximum Likelihood Loss

Easy to turn the evaluation of “t” into supervised training problem:

t(D) = —2Min N(w)—N(R) —Zf(ﬂfi;w) N(w) = /dw n(z|R) e/ @W)

Use Reference Sample, distributed according to the Reference Model
R:{CIZZ}, 1= 177NR

Approximate integral as Monte Carlo sum:

N(w):/da:n(a:\R) el (@w) — NR Z fliw)
TER

Get t = -2 * minimal loss. The trained net is distribution log ratio

t(D) = —2 Min %z)z el @w) 1) — Zfa:w = —2Min L[f(-,w)]

{w} L TER xeD {w}
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The Algorithm

INPUT ; OUTPUT
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The Algorithm

Non-Neymann—Pearson formulation:
e |earn likelihood ratio, use it for test

e other loss functions can be used, connection with lik.free inf.

¢ Neymann—Pearson loss performs [a bit] better in our examples
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Agreement with x2 dof=#NNpar.
Expected for ML in As.Lim.
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Our Z-score
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Quantifying Performances: NP3
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Other features

(In)-Sensitivity to Cuts:

Unlike binned histogram, NN reach not affected by signal-free data
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(In)-Sensitivity to Cuts:

Unlike binned histogram, NN reach not affected by signal-free data
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Mild Sensitivitytto Hyperparameters

But larger Networks much more difficult to train

Significant degradation with dimensionality
To be expected, but how it scales with “d”?




Pending Issues

"Easy” ones:

¢ Include systematics in Reference data (MC or from control region).
Seemingly straightforward to treat them as nuisance parameters

¢ Reduce Reference sample size by weighting.



Pending Issues

"Easy” ones:
¢ Include systematics in Reference data (MC or from control region).
Seemingly straightforward to treat them as nuisance parameters

¢ Reduce Reference sample size by weighting.

Hard one: Model Selection

¢ Even if sensitivity was mild in our examples, how to choose NN
architecture/WeightClipping [or reg.]?

¢ Heuristic approach: more capacity is better, bound from training
convergence in finite time and from agreement with x2

e Mathematical approach(?): apply NN convergence theorems?
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Towards Model Selection
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Other Approaches

CWolLa H Unting: [Collins, Howe, Nachman: arXiv:1805.02664]

Data/Reference regions selected by mass-window (like BumpHunter)
NN learns Data/Reference distribution ratio of additional variables

Ratio provides additional discriminant and improves BumpHunter reach

Novelty Detection: [Hajer et al.: arXiv:1807.10261; Pierini et al., in progress]
Slightly different: we don’t necessarily care of “rare” SM events

Non-QCD Je1lS: [Aguilar-Saavedra et al.: arXiv:1709.01087 Heimel et al.: arXiv:1808.08979]

Gaussian Mixture pdf [Kuusela et al.: arXiv:1112.3329]
Use Gaussian Mixture pdf estimate for Data and for Reference

NeareSt'NeighbourS pdf [De Simone, Jacques: arXiv:1807.06038]
Use Nearest-Neighbours pdf estimate for Data and for Reference
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