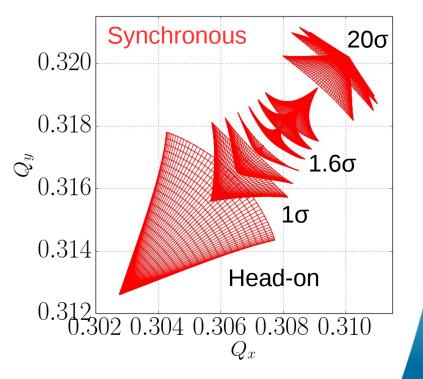
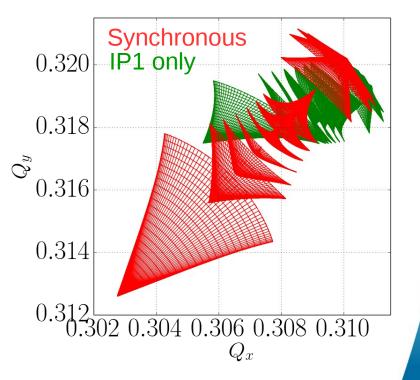

Landau damping with asynchronous collapse of the separation bumps

X. Buffat

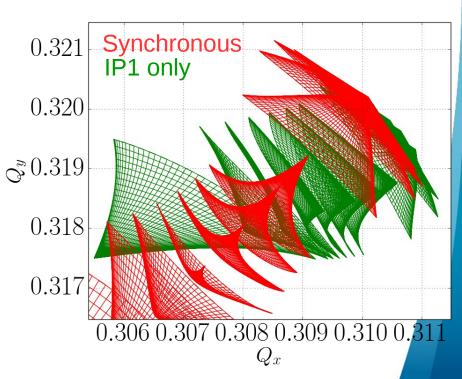
WP2 meeting 04.09.2018



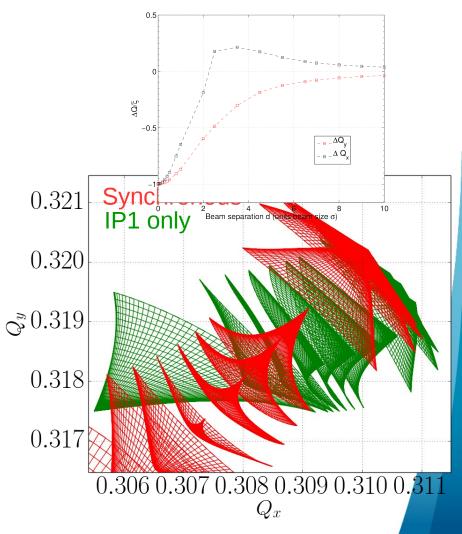
- The tune shifts due to beambeam interactions are passively compensated when colliding synchronously IPs 1 and 5
 - This is not the case with an asynchronous collapse of the bumps
- A similar asymmetry is obtained in the tune spread, allowing for a partial mitigation of the minimum of stability with offset beams



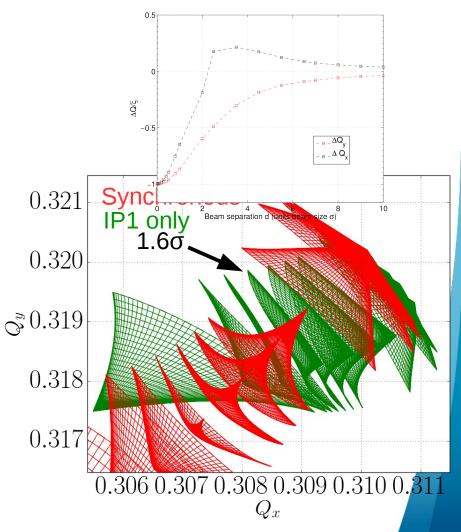
- The tune shifts due to beambeam interactions are passively compensated when colliding synchronously IPs 1 and 5
 - This is not the case with an asynchronous collapse of the bumps
- A similar asymmetry is obtained in the tune spread, allowing for a partial mitigation of the minimum of stability with offset beams



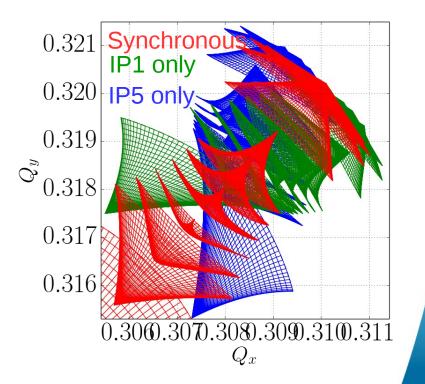
- The tune shifts due to beambeam interactions are passively compensated when colliding synchronously IPs 1 and 5
 - This is not the case with an asynchronous collapse of the bumps
- A similar asymmetry is obtained in the tune spread, allowing for a partial mitigation of the minimum of stability with offset beams



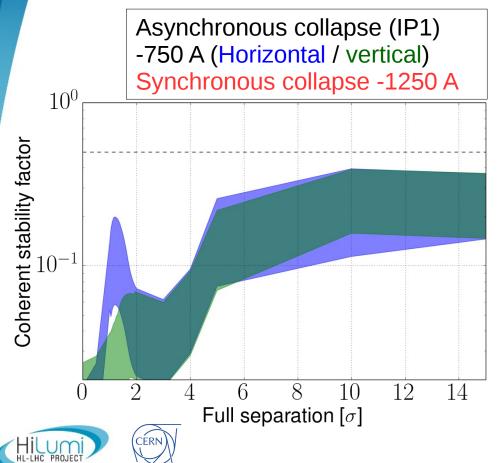
- The tune shifts due to beambeam interactions are passively compensated when colliding synchronously IPs 1 and 5
 - This is not the case with an asynchronous collapse of the bumps
- A similar asymmetry is obtained in the tune spread, allowing for a partial mitigation of the minimum of stability with offset beams



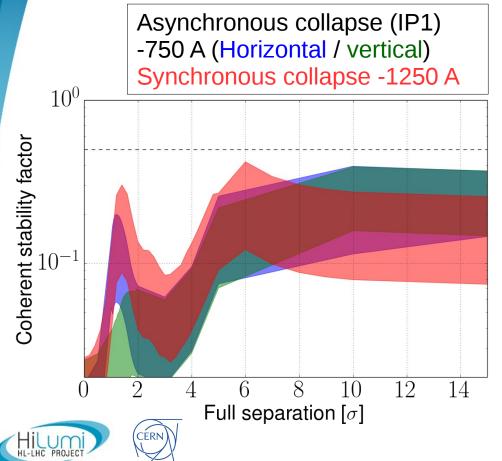
- The tune shifts due to beambeam interactions are passively compensated when colliding synchronously IPs 1 and 5
 - This is not the case with an asynchronous collapse of the bumps
- A similar asymmetry is obtained in the tune spread, allowing for a partial mitigation of the minimum of stability with offset beams



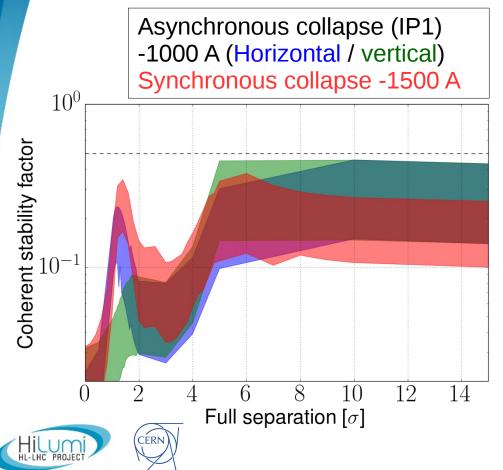
- The tune shifts due to beambeam interactions are passively compensated when colliding synchronously IPs 1 and 5
 - This is not the case with an asynchronous collapse of the bumps
- A similar asymmetry is obtained in the tune spread, allowing for a partial mitigation of the minimum of stability with offset beams



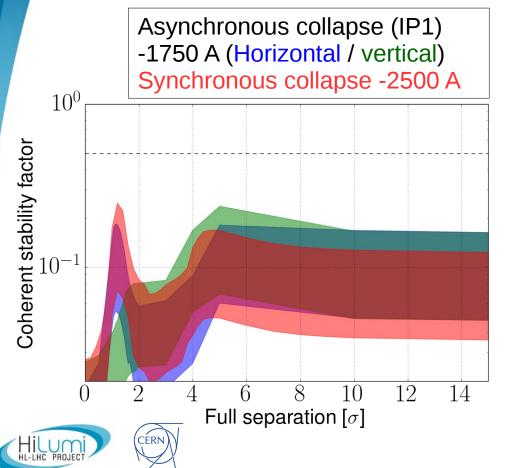
- The tune shifts due to beambeam interactions are passively compensated when colliding synchronously IPs 1 and 5
 - This is not the case with an asynchronous collapse of the bumps
- A similar asymmetry is obtained in the tune spread, allowing for a partial mitigation of the minimum of stability with offset beams



Ultimate BCMS scenario - Nominal collimator upgrade



Ultimate BCMS scenario - Nominal collimator upgrade


- When collapsing the separation bump of one IP :
 - The long range contribution of the second IP is reduced → Beneficial impact on the minimum of stability at 6-10 σ
 - The minimum of stability at 1-2 σ occurs only in one plane and is less critical
- The stability is ensured by this head-on interaction during the collapse of the other IPs
- With the nominal collimator upgrade, the tele-index required is reduced from ~2.3 to ~1.7

Ultimate BCMS scenario - LS2 collimator upgrade

 With the LS2 collimator upgrade, the tele-index required is reduced from ~2.9 to ~2.2

Ultimate BCMS scenario - no collimator upgrade

 Without collimator upgrade, the teleindex required is reduced from ~3.9 to ~3.0

Summary

Requirements with a synchronous collapse :

			,					
	an anotion []	Equivalent octupole current [A] (Telescopic index)						
	Separation [σ]		Nominal			Ultimate		
		CFC	LS2 upg.	Full upg.	CFC	LS2 upg.	Full upg.	
	6-10	-1250 (2.6)	-1000 (2.2) -750 (1.7)	-1020 (2.2)	-900 (2.0)	-780 (1.7)	
	1.5-2	-2500 (3.9)	-1000 (2.2)) -750 (1.7)	-2750 (4.2)	-900 (2.0)	-780 (1.7)	
(a) $\varepsilon = 2.5 \mu \mathrm{m}$								
C.	operation [σ]	Equivalent octupole current [A] (Telescopic index)						
5	paration [σ]		Nominal			Ultimate		
		CFC	LS2 upg.	Full upg.	CFC	LS2 upg.	Full upg.	
6-	-10	-1500 (2.9)	-1200 (2.5)	-1000 (2.2)	-1500 (2.9)	-1250 (2.6)	-1100 (2.3)	
1	5.0	\mathbf{a}	1200(200)	1000(2.2)	2600(4.0)	-1250 (2.6)	-1100 (2.3)	
1.	.5-2	-2300 (3.8)	-1300 (2.8)	-1000 (2.2)	-2600 (4.0)	-1230(2.0)	1100 (2.3)	
1.	.5-2	-2300 (3.8)	. ,	$\epsilon = 1.7 \mu m$	-2000 (4.0)	-1230 (2.0)		
1.	.5-2	-2300 (3.8)	(1	. ,				

De-synchronising the collapse of the separation bumps in IPs 1 and 5 reduces the octupole requirement by ~ 30 % at the end of the ramp/squeeze

Summary

Requirements with a synchronous collapse :

			,					
C.		Equivalent octupole current [A] (Telescopic index)						
se	paration $[\sigma]$		Nominal			Ultimate		
		CFC	LS2 upg.	Full upg.	CFC	LS2 upg.	Full upg.	
6-1	10	-1250 (2.6)	-1000 (2.2) -750 (1.7)	-1020 (2.2)	-900 (2.0)	-780 (1.7)	
1.5	5-2	-2500 (3.9)	-1000 (2.2)) -750 (1.7)	-2750 (4.2)	-900 (2.0)	-780 (1.7)	
(a) $\varepsilon = 2.5 \mu \mathrm{m}$								
Sand	protion [σ]	Equivalent octupole current [A] (Telescopic index)						
Sepa	paration [σ]		Nominal			Ultimate		
		CFC	LS2 upg.	Full upg.	CFC	LS2 upg.	Full upg.	
6-10)	-1500 (2.9)	-1200 (2.5)	-1000 (2.2)	-1500 (2.9)	-1250 (2.6)	-1100 (2.3)	
1.5-2	2	-2300 (3.8)	-1300 (2.8)	-1000 (2.2)	-2600 (4.0)	-1250 (2.6)	-1100 (2.3)	
			(1	b) $\varepsilon = 1.7 \mu \mathrm{m}$		V		
	-1750 (3.0), -1000 (2.2), -750 (1.7)							

De-synchronising the collapse of the separation bumps in IPs 1 and 5 reduces the octupole requirement by ~ 30 % at the end of the ramp/squeeze

➤ The separation plane of the IP selected is most critical → Can be chosen according to the most critical impedance

Summary

Requirements with a synchronous collapse :

			,		•			
	Companyation [-]	Equivalent octupole current [A] (Telescopic index)						
1	Separation $[\sigma]$		Nominal			Ultimate		
		CFC	LS2 upg.	Full upg.	CFC	LS2 upg.	Full upg.	
(6-10	-1250 (2.6)	-1000 (2.2)	-750 (1.7)	-1020 (2.2)	-900 (2.0)	-780 (1.7)	
	1.5-2	-2500 (3.9)	-1000 (2.2)	-750 (1.7)	-2750 (4.2)	-900 (2.0)	-780 (1.7)	
(a) $\varepsilon = 2.5 \mu \text{m}$								
So	paration $[\sigma]$	Equivalent octupole current [A] (Telescopic index)						
30			Nominal			Ultimate		
		CFC	LS2 upg.	Full upg.	CFC	LS2 upg.	Full upg.	
6-	10	-1500 (2.9)	-1200 (2.5)	-1000 (2.2)	-1500 (2.9)	-1250 (2.6)	-1100 (2.3)	
1.:	5-2	-2300 (3.8)	-1300 (2.8)	-1000 (2.2)	-2600 (4.0)	-1250 (2.6)	-1100 (2.3)	
			(t	$\varepsilon = 1.7 \mu \mathrm{m}$	▶			

> De-synchronising the collapse of the separation bumps in IPs 1 and 5 reduces the octupole requirement by ~ 30 % at the end of the ramp/squeeze

-1750 (3.0), -1000 (2.2), -750 (1.7)

➤ The separation plane of the IP selected is most critical → Can be chosen according to the most critical impedance

 For luminosity levelling, there is also a gain by chosing the same levelling plane (independently of the crossing angle plane)