
D3PD Maker Package

Scott Snyder

BNL

Jan 18, 2010

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 1 / 27

Design goals

Focus only on making D3PDs from EDM objects in StoreGate. Don’t
try to build an analysis framework.
Assumption is that any needed analysis will be done in upstream
Athena algorithms, and the results stored in SG (and can then also be
written to D[12]PDs.)

Focus on making flat tuples that can be rapidly read in root with no
extra dictionaries. But don’t preclude embedding objects as well.

Variables in the tuple should be grouped into related blocks at a
relatively fine level of granularity. Each block is associated with a
‘level of detail;’ blocks can be selected by choosing a level or detail or
individually.

The tuple should be easily extensible by user code without requiring
changes to the core packages.

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 2 / 27

Definitions

Files contain trees .

Trees contain objects .

Object ≡ an object or
container from SG.
Identified by a variable
prefix.

Objects contain blocks .

Block ≡ group of related
variables for an object.
Defines granularity
of variables (level-of-
detail).

Blocks contain variables .

Any type known to Root.

File: egamma.root

Tree: egamma

Object: el_

Block: Kinematics (0)

el_eta
el_phi

...
Block: Shape (1)

el_f1
...

Object: ph_
...

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 3 / 27

Using D3PDs

D3PDMaker described here:
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/
D3PDMaker

Pointers to some existing D3PDs are given on that page.

D3PDs are standard Root tuples. Those made so far use only simple
types and vectors of simple types.

Egamma tuples contain detailed information about electrons, photons,
and muons, and basic kinematic information about other objects.

Physics tuples contain more information about jets, tracks, clusters,
and missing ET .

Other groups have defined other tuples.

Lists of variables for electrons, photons, and muons may be found in
D3PDMakerConfig/doc.

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 4 / 27

Available tuple objects

egamma
I Contains most of the requested variables: Kinematics, shower shape,

track match, conversions, egamma trigger decisions, truth and trigger
matches.

I Also flags for passing loose/medium/tight selections.

Muons.
I No trigger or truth matching yet.

Taus (Dugan O’Neil).

Tracks/vertices/clusters (Maarten Boonekamp).

Jets (Pier-Olivier Deviveiros).

Missing ET (Jet Goodson).

Truth (M. Boonekamp, S. Snyder)

In progress:
I Full tringger information (Attila K.)

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 5 / 27

Making D3PDs

Current list of tags for making D3PDs is here:
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/
D3PDMaker

I Last version is Dec. 18.
I Tested with 15.6.1. Most of these tags should be in 15.6.3.
I In 15.6.X and 16.X nightlies.

Example top-level JO: D3PDMakerConfig/AODToEgammaD3PD.py.

Edit to specify your input and output files.

Some options:

from D3PDMakerConfig.D3PDMakerFlags import D3PDMakerFlags
D3PDMakerFlags.DoTrigger = True # Default
from RecExConfig.RecFlags import rec
rec.DoTruth = True # Autoconfigured by default.
Set SG key. First listed key that exists is used.
D3PDMakerFlags.ElectronSGKey = \
’ElectronAODCollection,ElectronCollection’

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 6 / 27

Basic configuration

Tuple configured with lines like this:

from D3PDMakerConfig.egammaD3PD import egammaD3PD
alg = egammaD3PD (’egamma.root’, # Filename

’egamma’, # Treename
10) # Desired level of detail.

Also exists physicsD3PD.

Can add user-defined objects to the tuple:

from egammaD3PDMaker.ElectronD3PDObject \
import ElectronD3PDObject

alg += ElectronD3PDObject (10, sgkey = ’my_electrons’,
prefix = ’myel_’)

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 7 / 27

Extending the D3PD Maker

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 8 / 27

Tuple making

Each tree is made by an instance of MakerAlg:

alg = D3PDMakerCoreComps.MakerAlg(
’testTree’,
topSequence,
file = ’out.root’)

Multiple trees can be created in the same file.

Root dependencies are isolated behind abstract interfaces: ID3PDSvc
creates an instance of ID3PD.

Specific implementations exist for Root (RootD3PDSvc, RootD3PD).

In principle, can write other forms of tuple (HDF5, UserData, etc.) by
replacing this service.

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 9 / 27

Object filling

Each tree has a list of IObjFillerTool instances.

Each filler tool:
I Retrieves an input object.
I If it’s a collection, iterate over the contents.
I Iterate over list of block filler tools.

Tools available include:
I ObjFillerTool — for single objects.
I VectorFillerTool — for collections. Puts the results in

std::vector objects in the tuple.

These tools are generic (don’t depend on the type of object being
processed).

Take “Getter” tools as properties. Abstracts the retrieval of the input
objects. Usually one of:

I SGObjGetterTool
I SGDataVectorGetterTool

to retrieve a single object or a collection from StoreGate.

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 10 / 27

Object filler configuration example

Define electron object:

from D3PDMakerCoreComps.D3PDObject \
import make_SGDataVector_D3PDObject

from D3PDMakerConfig.D3PDMakerFlags import D3PDMakerFlags

ElectronD3PDObject = make_SGDataVector_D3PDObject \
(’ElectronContainer’,
D3PDMakerFlags.ElectronSGKey(),
’el_’)

Think of this like a class, which you instantiate by adding to a tuple:

alg += ElectronD3PDObject (level_of_detail)
alg += ElectronD3PDObject (level_of_detail,

sgkey = ’ReprocessedEle’,
prefix = ’reel_’)

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 11 / 27

Block filler tools

Takes an object and copies some data from it to the tuple.

Define the granularity at which the contents of the tuple may be
controlled.

Always operates on a single object; iterating over objects in a
collection and putting the results in a container is the responsibility of
the object filler tool.

Defined by interface IBlockFillerTool.

User code will generally derive from the type-safe wrapper
BlockFillerTool<T>.

Class objects can be added to the tuple as well as simple types, using
the same interface.

Block filler tools are attached to D3PD objects. Each has a name and
a level of detail.

ElectronD3PDObject.defineBlock (0, ’Kinematics’,
FourMomFillerTool)

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 12 / 27

Extending standard objects
You can customize your tuple by adding new block filler tools to
standard objects.

from D3PDMakerConfig.egammaD3PD import egammaD3PD
from egammaD3PDMaker.ElectronD3PDObject \

import ElectronD3PDObject
from mytools import mytoolsConf

All electron objects will have this block.
ElectronD3PDObject.defineBlock (1, ’myblock1’,

mytoolsConf.myblock1)
alg = egammaD3PD (tupleOutputFile)

Electron objects added from here on will have this block.
ElectronD3PDObject.defineBlock (1, ’myblock2’,

mytoolsConf.myblock2)
alg += ElectronD3PDObject (10, sgkey = ’my_electrons’,

prefix = ’myel_’)
Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 13 / 27

Example: FourMomFiller

class FourMomFillerTool
: public BlockFillerTool<INavigable4Momentum>

{
public:
FourMomFillerTool (const std::string& type,

const std::string& name,
const IInterface* parent);

virtual StatusCode book();
virtual StatusCode fill (const INavigable4Momentum& p);

private:
float* m_pt;
float* m_eta;
float* m_phi;

};

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 14 / 27

Example: FourMomFiller

StatusCode FourMomFillerTool::book()
{
CHECK(addVariable ("pt", m_pt));
CHECK(addVariable ("eta", m_eta));
CHECK(addVariable ("phi", m_phi));
return StatusCode::SUCCESS;

}

StatusCode
FourMomFillerTool::fill (const INavigable4Momentum& p)
{
*m_pt = p.pt();
*m_eta = p.eta();
*m_phi = p.phi();
return StatusCode::SUCCESS;

}
Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 15 / 27

Tuple configuration
So can configure an entire tuple with a function like this:

def makeTestD3PD (file, level = 10,
tuplename = ’test’, seq = topSequence,
D3PDSvc = ’D3PD::RootD3PDSvc’):

alg = D3PDMaker.MakerAlg(tuplename, seq, file = file,
D3PDSvc = D3PDSvc)

alg += EventInfoD3PDObject (level)
alg += ElectronD3PDObject (level)
alg += JetD3PDObject (level)
return alg

Usage from top JO:

alg = makeTestD3PD (’out.root’)
alg += ElectronD3PDObject (10, prefix = ’myel_’,

sgkey = ’MyElectrons’)

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 16 / 27

Type conversion caveat
The D3PD maker may need to convert pointer types.

I Example: You use a getter returning an ElectronContainer and a
block filler tool expecting a pointer to an INavigable4Momentum.

Type conversion is done using SGTools/BaseInfo.h.
Information for this comes from DATAVECTOR_BASE and SG_BASE
declarations in the headers. (See DataVectorMacros twiki page.)
If this is not present, then the type conversions may fail.
(May also fail if no reflex dictionary exists for the involved types. This
should be improved in the 16.X nightlies.)
If the appropriate macros are not present in the header files, the
information can be added in D3PD packages using SG_ADD_BASE:

#include "EventKernel/INavigable4Momentum.h"
#include "EventKernel/IParticle.h"
#include "SGTools/BaseInfo.h"
SG_ADD_BASE (IParticle, SG_VIRTUAL(INavigable4Momentum));

These should eventually be migrated back to EDM classes, however.

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 17 / 27

More on block configuration

Besides specifying a simple level-of-detail, one can also request that
specific blocks be included or excluded:

alg += ElectronD3PDObject (1,
include = [’RefittedTrk’],
exclude = [’HadLeakage’])

You can also pass arguments to specific block fillers:

alg += ElectronD3PDObject (1,
{’Kinematics’ :

{’WriteE’ : False}})

or equivalently:

alg += ElectronD3PDObject (1, Kinematics_WriteE = False)

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 18 / 27

More on block configuration

Each block as a specified level-of-detail:

d3pdobject.defineBlock (1, ’MyBlock’, MyFiller)

Level-of-detail can now be a function. Gets as arguments the
requested level-of-detail and the block filler arguments (may modify).

def my_lod_func (reqlev, args):
if reqlev < 1: return False
if reqlev >= 2:
args[’IncludeMore’] = True

if reqlev >= 3:
args[’IncludeEvenMore’] = True

return True
d3pdobject.defineBlock (my_lod_func, ’MyBlock’, MyFiller)

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 19 / 27

UserData
Doing non-trivial analysis tasks in the block filler code is discouraged;
this should instead be done in separate Athena algorithms.
Results can be written to new EDM classes and put in StoreGate.
Sometimes, making new EDM classes is overkill.
Can instead use UserDataSvc to associate arbitrary objects
(“decorations”) with EDM objects.
These can be saved in pool files.
There is also a generic tool to save these into D3PD:

ElectronD3PDObject.defineBlock \
(1, ’UDLayer1Shape’,
D3PDMakerCoreComps.UserDataFillerTool,
Prefix to add in front of UD labels.
UDPrefix = D3PDMakerFlags.EgammaUserDataPrefix(),
d3pdvar ud label type
[null->d3pdvar]
Vars = [’deltaEmax2’, ’’, ’float’])

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 20 / 27

UserData

This is now used for a few egamma variables that were too
complicated to calculate in the filler tools.

egammaD3PDAnalysis contains Athena algorithms that calculate the
variables and store them as UserData.

egammaD3PDMaker then stores these variables into the d3pd from
UserData.

Example: Conversion truth analysis. (Algorithm adapted from
PhotonAnalysisUtils.)

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 21 / 27

Simple associations

Simple (single) associator tool maps from one object to another.

Example:
I Have a tool that fills track parameters d0, etc. from a TrackParticle.
I Write association tools:

F egamma → TrackParticle
F Muon → TrackParticle

I Can then use the common TrackParticle tool with both.
I Configuration:

ElectronTPAssoc = SimpleAssociation \
(ElectronD3PDObject, egTPAssocTool,
prefix = ’track_’, matched = ’matched’)

ElectronTPAssoc.defineBlock (1, ’Track’, TPParamsFillerTool)

I Makes variables el_track_d0, etc.
I Also makes flag variable el_track_matched.

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 22 / 27

Simple association tool example

Such tools should generally derive from SingleAssociationTool.

class egTPAssocTool
: public SingleAssociationTool<egamma, Rec::TrackParticle>

{
public:
egTPAssocTool (const std::string& type,

const std::string& name,
const IInterface* parent);

virtual const Rec::TrackParticle* get (const egamma& p)
{ return p.trackParticle(); }

};

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 23 / 27

Other available association filler tools

Associations can either be single (as just shown) or multiple (in which
a single source object associates to a set of target objets).

Note the separation between the formation of an association and how
the association is represented in the tuple.

IndexAssociation — Represent a single association by an index
into a collection. Need to reference a Getter to define the collection
within which to index.

IndexMultiAssociation — Represent a multiple association by a
vector of indices into a collection.

ContainedVectorMultiAssociation — Represent a multiple
association by putting result variables into vector. This will usually
create nested vectors.

ContainedMultiAssociation — Represent a multiple association
by repeating the tuple rows.

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 24 / 27

Metadata
Metadata may be associated with a d3pd tree; each tree has an
associated set of (key, value) pairs.
Implementation:

I For a tree named “Foo” we create a root directory “FooMeta”. The
objects in this directory are the metadata; their names are the keys.

Straightforward to read in interactive root (at least if a TObject type
is used). Metadata need not be read until needed.
ID3PD object gets a new method:

TObjString* obj = new TObjString ("some string");
StatusCode sc = d3pd->addMetadata ("mdkey", obj);

Interface IMetadataTool defines:

virtual StatusCode writeMetadata (ID3PD* d3pd) = 0;

D3PD::MakerAlg takes a list of these tools, called at end-of-job.

alg.MetadataTools += [LBMetadataConfig()]

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 25 / 27

Metadata

LBMetadataTool writes the luminosity XML string to the d3pd at
the end of the job.

Using metadata key Lumi.

Configured by default for the egamma and physics D3PDs.

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 26 / 27

Summary

D3PDMaker is available for people to try out.

For more information see:
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/
D3PDMaker and files in D3PDMakerConfig/doc.

Some standard tuple configurations available, or build your own.

Production of standard D3PDs under discussion.

Tools for automatic validation are under construction.

Scott Snyder (BNL) D3PD Maker Package Jan 18, 2010 27 / 27

