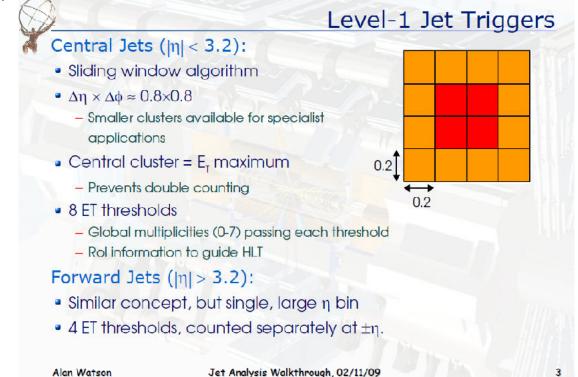


Jet and MET measurements in 2009/2010 data

Argonne Jamboree January 2010

Belen Salvachua Esteban Fullana

Outline


- Physics motivation goals
- Jet triggers:
 - Commissioning
 - Initial beam
- Jet and MET calibration:
 - Performance studies
 - Jet Energy Scale (JES) determination
 - Data format for performance studies
- Steps for jet physics measurements
- Current status: ETMISS
- Current status: JETS
- Summary

Physics motivation goals (from Walkthrough)

- <u>http://indico.cern.ch/conferenceDisplay.py?confld=71239</u>
- with earliest data (Vs = 900 GeV, O(1) nb-1)
 - show that ATLAS observes jet production
 - > 20000 jets with ET>15 GeV ($|\eta|$ <2.5) per nb-1
 - > 40 jets with ET>50 GeV ($|\eta|$ <2.5) per nb-1
- with initial data (Vs = 7 TeV, 1-10 pb-1)
 - observe jet production in new kinematic regime
 - first credible understanding of jet energy scale
 - initial measurements on EM scale?
- with full 2010 data set (√s ≥ 7 TeV, 10-100 pb-1)
 - good understanding of jet energy scale
 - more (and refined) measurements on jet production and jet properties in new kinematic regime

Jet triggers in early data

- Early analysis will relay primarily on level 1 triggers
 - HLT selections will be activated, after commissioning, as required by rate
 - These analyses are mainly concerned with inclusive jet triggers (di-jet triggers being evaluated)

Jet trigger commissioning steps

Cosmics/Early Beam

- Understand noise, locating & handling dead/hot channels
- First timing-in of towers, outputs, readout
- Approximate tower ET against cell readout
- Start exercising HLT algorithms

• 900 GeV/Initial 7 TeV

- Establish & correct L1 timing for collision data
- Check tower calibration against cell readout
- Begin study of jet turn-on, efficiency

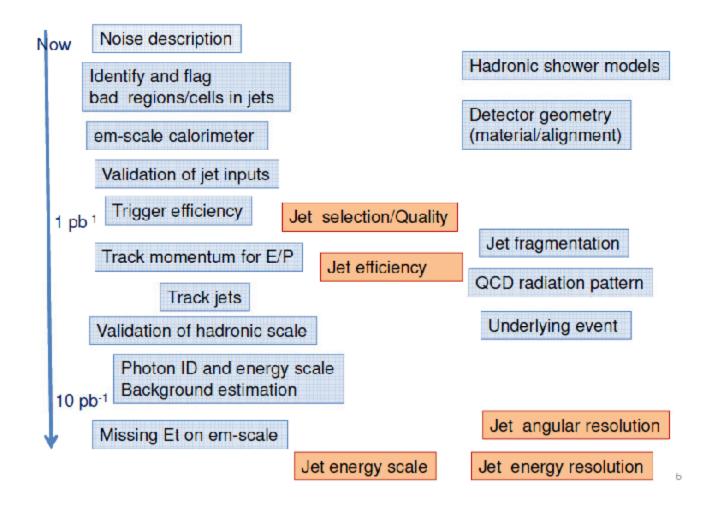
• Up to ~10 pb-1 7 TeV

- Precise measurement of inclusive jet trigger efficiencies
- Commissioning of HLT algorithms (introduce when needed)
- Studies of jet calibration (L1 and HLT). Assess refinements to L1 calibration

Initial beam trigger remarks

Minimum Bias

- L1_MBTS_2 as main trigger for 900 GeV collisions.
 - Use orthogonal minimum bias triggers to check efficiency (RD0, LUCID)
 - Efficiency for non-diffractive QCD = 100% / pre-scale


• Jet

- L1_J5, L1_J10, L1_J10_win6, L1_J15, L1_J30, L1_J55, L1_J75
 - Commissioning oriented: low thresholds, some only for validation.
 - Pre-scales adjusted in response to rates.
- No HLT selections
 - HLT items run for commissioning but in pass-through mode

General remarks

- Physics triggers will be ANDed with BPTX (replaced by BG once commissioned)
- Not just a 900 GeV menu.

Jet ETmiss performance studies

Roadmap to the determination of jet energy scale

1. Start with JES from MC

- Establish jet quality: bad calorimeter regions, background rejection, good runs...
- Compare Data to MC: single particle, calorimeter energy flow, jets...
- Produce preliminary distributions at EM-scale (Data/MC)
- If MC is reasonable, derive JES uncertainty from data/MC comparisons:
 - single particles
 - jet distributions and internal jet structure

2. Establish JES using in-situ techniques (from EM or hadronic scale)

- Aim is to provide solid uncertainty for physics analysis
- Main tool is data/MC comparisons gamma-jet and di-jets
- Work on MC improvements e.g. :
 - detector geometry: DM, cracks, time dependent detector defects, z-vtx etc.
 - QCD: radiation, underlying event

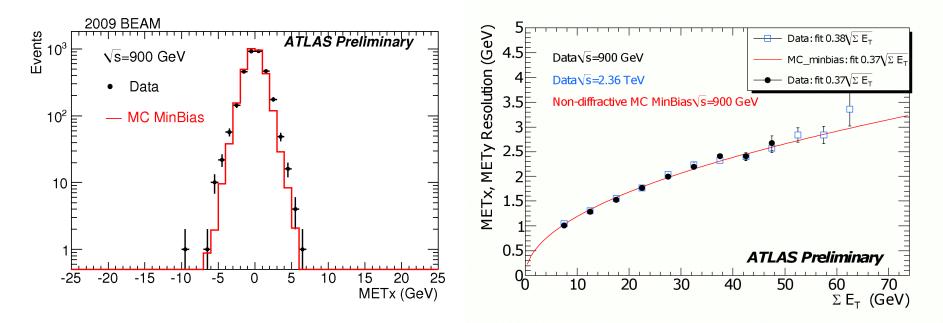
3. Establish JES using MC

 use in-situ techniques to get JES uncertainty if agreement of MC with data is achieved and uncertainty can be reduced

10 pb⁻¹

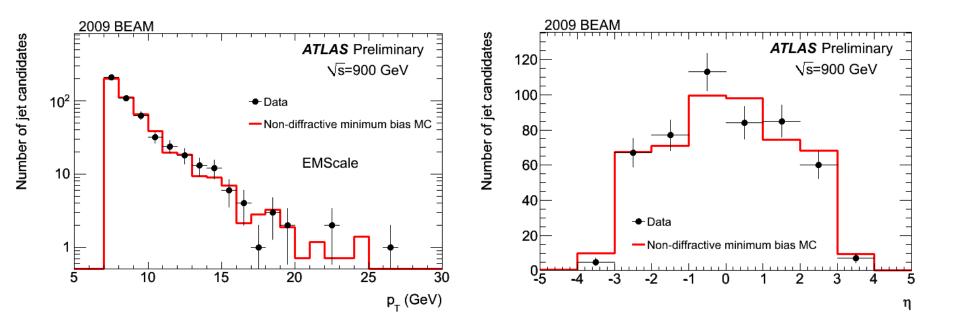
pb⁻¹

Data formats for performance studies in early data


- Performance Studies
 - dESD (performance DPD) is the primary format
 - Common D3PD across Performance DPDs under discussion

desd_caljet	Jet calibration/performance	Full ESD (PrepRawData removed)
desd_phojet	Jet calibration with γ+jet	Full ESD
dESD_MBIAS	Jet reconstruction, noise, calorimeter E /p study	Full ESD

Steps for a jet physics measurement


- Trigger efficiency
- Data Quality and Luminosity
- Cosmic events veto
- Detector effects
- Unfolding
 - Jet resolution measurement
- Uncertainties
 - Jet energy scale
 - Jet resolution
 - Luminosity

Current status: ETMISS

- Only cells in topological clusters are used (noise suppression)
- No calibration is applied

Current status: JETS

• Jet collection used → AntiKt 0.4 Topo-Jets at EM-scale

Summary

"This is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning."