

General searches for new particles at the LHC

S.Chekanov (ANL) ANL Jamboree, Jan 2010

Introduction

- Searches of high-mass resonances will be a primary task at ATLAS
- Many models, many final-state topologies (good topic for many talks)
- From the point of view of final-state signatures, they fall into 3 categories:
 - (1) All decay products of a particle "X" are observable and spatially well separated
 - Any 2-body decays or cascade decays with masses < 1 TeV
 - Examples: G \rightarrow $\gamma\gamma,$ h \rightarrow W+W- etc
 - (2) Decay products are not directly observable
 - Examples: decays involving neutrino or any other unobservable state
 - (3) Decay products partially or completely overlap
 - Cascade decays of TeV-scale particles (large Lorentz boost)

Introduction

- A general search program was developed for cases (1-2) to look at distinctive signatures when decay product can be resolved as separate objects
 - Covers processes with missing pT
 - See also detailed discussion at the jet+X meeting (November 2009)

J.Boomsma,S.C ATL-COM-PHYS-2009-619

As a general tool, it's designed to:

- generate statistical summaries with decay signatures
- alert a searcher
- identify most interesting channels and put them under scrutiny
- identify reflections (overlap) from other channels

Previous studies (HERA, Tevatron)

S.Chekanov

InvMass: In Brief

need a computer program

S.Chekanov

InvMass: Architecture

Compartmentalized:

- Class InvMass to create and fill histograms
- Host program with loop to access individual events in .root file(s)

Generic code in Class InvMass

- Works with for any number of particle types, and any variety
- Any-body decays (2,3,4,...)

Configuration file (text file) allows for changes without recompiling

Input configuration file:

- Which particle types to use
- How many combinations to search for
- Pt cuts
- Rapidity cut
- Overlap removal
- Histogram details (bins, range)
- Input File(s)
- Output file name

J.Boomsma,S.C ATL-COM-PHYS-2009-619

InvMass: More to Come

- Working prototype is ready
- Tested using PYTHIA:
 - signal (realistic MC) & background (AtlFast)
- Available at ANL Analysis support center SVN:
 - http://atlaswww.hep.anl.gov/asc/WebSVN/
 - Will be moved to the group common ATLAS common area
- Realistic MC simulation can be done for filtered events

Limitation:

- InvMass is not suited when decay products are so close that they are unresolved (for example, are all inside a single jet)
- Example: cascade decays of TeV-scale particles. See next.

Searches for TeV-scale particles with cascade decays

- Many models predict heavy-mass resonances decaying to WW, tt, etc..
 Examples:
 - Z' with the SM coupling (ttbar, qq, W+W-)
 - Gravitons to ttbar, γγ
 - Kaluza-Klein gluon excitations: B.Lillie (ANL), L.Randall, L.T.Wang JHEP 09 (2007) 74
- For a cascade decays, decay products will be highly boosted

 $X \rightarrow t\bar{t} \rightarrow W+b W-b \rightarrow 4 q 2 b or X \rightarrow W+W- \rightarrow 4 q$

- Will be detected as jets, where jet substructure may reflect the underlying production mechanism which will (hopefully) be distinct from QCD jets
 - Use this feature to deal with QCD background

Kinematic consideration

- Assume the reaction: $X \rightarrow tt \rightarrow W+b W-b \rightarrow 4 q 2 b$
- Look at maximum angle between all final decay products (quarks) and the original top-quark direction
- Use a simple Monte Carlo consisting of a decays in HCM system and Lorentz boost to the laboratory frame

For anti-kT algorithm with D=0.4, 2 jets cannot be resolved if angular separation is smaller than 21 deg

(31 deg for D=0.6)

→ Significant fraction of events with decay products from one of the top quarks inside a single "mono" jet

Looking at jet shapes

- Jet shapes can help to reduce contribution from QCD jets
- Suggested in several recent articles
 - For ttbar: B.Lillie (ANL), L.Randall, L.T.Wang JHEP 09 (2007) 7
- For other channels:
- J. M. Butterworth, J. R. Ellis, A. R. Raklev, JHEP 05 (2007) 033.
- J. M. Butterworth, et al., Preprint CERN-PH-TH/2009-073, hep-ph/0906.0728, 2009.

Goal:

Extend the study of the channel X-> ttbar by considering jet shapes for background rejection

Jet selection

- Use anti-kT jet algorithm with D=0.4
- Consider 1st and 2rd leading in pT jet
- pT(jet)>500 GeV

Jet shapes

- Jet mass (only 2 leading in pT)
- Jet width (weighted in $R \sim \sum dR pT$)
- Jet eccentricity (ECC ~ $1 v_x / v_y$)
 - ECC = 0 for circular jets, =1 for elongated
- kT flip parameters: y12flip and y23flip

Correlations between jet shape variables

	mass	width	ECC	yflip12	yflip23
mass	1	0.88(0.78)	0.32 (-0.10)	0.13(-0.10)	0.24(-0.11)
width	0.88(0.78)	1	0.32 (-0.10)	0.87(0.78)	0.30(0.31)
ECC	0.32(-0.10)	0.32(-0.10)	1	$0.05\ (0.06)$	$0.05\ (0.07)$
yflip12	0.13(-0.10)	$0.87 \ (0.78)$	0.05~(0.06)	1	0.90(0.97)
yflip23	0.24 (-0.11)	$0.30\ (0.31)$	$0.05 \ (0.07)$	0.90(0.97)	1

Pearson's correlation coefficients (p) for jet shape variables using PYTHIA model for inclusive pp production (pT(jet)>500 GeV):

- p= -1 full anti-correlationsp= 1 correlationsp= 0 no correlations
- •

(Parentheses show the channel Z' -> ttbar)

- Strong correlation between anti-kT flip parameters (yflip12 and yflip23)
- Other variables weakly correlated (like EEC)

(discussed in ANL-HEP-PR-10-2, S.C., J.Proudfoot)

Characteristics of 1st and 2rd leading antiKT4 jets

(discussed in ANL-HEP-PR-10-2, S.C., J.Proudfoot)

Characteristics of 1st and 2rd leading antiKT6 jets

Preferred algorithm: Jet masses exhibit large peaks near the mass of the t quark

Selection cuts and rejection factors

- Goal: Reject QCD background using the jet shapes
- Accept events with at least one jet at pT>500 GeV:
 - Mass(jet)>70 GeV
 - Jet width > 0.07 (for both)
 - ECC > 0.75
 - yflip12, yflip23 < 2 * 10⁻¹²

- Rejection factor ~120 for QCD jets
- ~ 3-4 for 2-3 TeV particles
- Significantly better than expected when no jet shapes are used
 - ~10 rejection was required for observation of KK gluon excitation

6-sigma discovery level

2-3 pb cross section for ~6 sigma discovery using 200 pb⁻¹

~ factor 10 smaller than for the Higgs production (150 GeV)

 \rightarrow same discovery level as for 10 fb⁻¹ without jet shapes!

M.Beneke and others. hep-ph/0003033

Full detector simulation

Model "X" particle using Z'

- Signal events
 - mc08.105609.Pythia_Zprime_tt2000.recon.AOD.e393_s462_s520_r635
 - mc08.105597.Pythia_Zprime_tt3000.recon.AOD.e435_s462_s520_r808

QCD background

- mc08.105015.J6_pythia_jetjet.recon.AOD.e344_s479_s520_r809
- mc08.105014.J5_pythia_jetjet.merge.AOD.e344_a84_t53

Characteristics of 1st leading antiKT4 jets

Characteristics of 2rd leading antiKT4 jets

QCD background rejection

Acceptance cuts (same as for the truth level)

- yflip12, yflip23 < 2 * 10⁻¹²
- Leading jet PT>500 GeV
- Jet mass>60 GeV
- Jet width > 0.1 (>0.05 for second) and
- Circularity>0.7

Rejection for QCD events

factor ~120-200 under 2 and 3 TeV mass

Rejection of ZPrime events factor: ~3

Similar conclusion as for the truth level

First look at jet shapes using 900 GeV MinBias data

Reasonable agreement, signs of discrepancies for large eccentricity and y-flip distributions?

Summary

- Model-independent searches for new particles are under way
- Studies cover:
 - channels with well-separated objects (InvMass program)
 - 2-body and cascade decays (<1 TeV particles)
 - channels with complete/partial overlap of decay products
 - TeV-scale particles with N-body decays
- Jet shapes are very attractive for searches of TeV-mass particles:
 - Rejection factors:
 - >100-200 for QCD jets
 - ~3 for the signal events
- ✓ few pb cross section for ~6 sigma discovery in X→ ttbar →6q using 10 TeV & 200 pb⁻¹

Similar to the expectations for 10 fb⁻¹ using only dijet invariant masses

M.Beneke and others hep-ph/0003033

