

Probing sterile neutrino in meson decays with and without sequential neutrino decay

C. S. Kim, Donghun Lee, Sechul Oh, and Dibyakrupa Sahoo

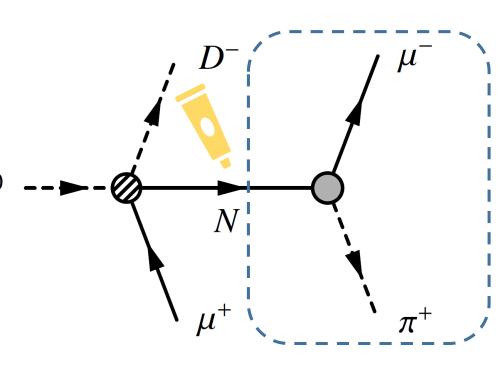
[arXiv:1908.00376]

Properties of sterile neutrino

- Electrically neutral It is assumed to interact with SM particles only through mixing $|U_{lN}|^2$. Therefore we choose the mode with a v_l at the final state and replace it by N.
- Spin $\frac{1}{2}$ In the decays such as $B \rightarrow D^* \mu N$ or $B \rightarrow KNN$, N can have the spin, $S_N = 1/2$, 3/2, so we choose $B \rightarrow D \mu N$, where only $S_N = 1/2$ is possible.
- Massive N will have a certain mass m_N therefore its momentum squared is fixed, $p_N^2 = m_N^2$. Thus we can use the decay mode $B \rightarrow D\mu N$ and see if it gives $(p_B p_D p_\mu)^2 = m_N^2$ to find N or constrain $|U_{lN}|^2$ whether N decays sequentially or not.
- Long-living The mixing parameter $|U_{lN}|^2$ is very small that N will live long. It may or may not decay inside a detector depending on $|U_{lN}|^2$, m_N , p_N and the detector size L_D .

• Majorana or Dirac - Sterile neutrino can either be Dirac or Majorana. We should look at the sequential decay of N to distinguish it's Majorana nature.

 $B \rightarrow D\mu N (\rightarrow D\mu\mu\pi)$


Goal

- Find N or constrain $|U_{lN}|^2$
- (And Distinguish Majorana nature of N by LNV)

Assumptions

- One sterile neutrino.
- N is on-shell
- m_N around GeV

 $(m_{\mu} + m_{\pi} \le) m_N \le m_B - m_D - m_{\mu}$

[arXiv:1904.12858]

Feature

- We will see the fixed missing momentum squared $(p_B p_D p_\mu)^2 = m_N^2$ if N exists and has proper mixing.
- (Displaced vertex due to small Γ_N . This eliminates background. But N may or **may not** decay inside a detector, i.e. $BR_{eff}(B \rightarrow D\mu\mu\pi)$ is suppressed, especially when N is relatively light.)

$B \rightarrow D\mu\mu\pi$

Including decay probability of $N \rightarrow \mu \pi$ inside a detector with a size L, we can rewrite a number of detectable signals

(In reality, B is not at rest and this effect is taken into account in real calculation.)

- Once the experiment is done, with an observed value of m_N , solving the above equation in terms of $|U_{\mu N}|^2$ will give the value of $|U_{\mu N}|^2$.
- Or if such a signal is not observed at all, we can give an upper bound on $|U_{\mu N}|^2$ by solving the following inequality

$$1 > N_{B \to D \mu \mu \pi}^{det} = N_B \left| U_{\mu N} \right|^2 \int dE_N \frac{d\underline{\Gamma}(B \to D \mu N)}{dE_N} \frac{1}{\Gamma_B} \frac{\underline{\Gamma}(N \to \mu \pi)}{\underline{\Gamma}_N} \left[1 - exp \left(-\frac{L}{\beta_N} \frac{\Gamma_N}{\gamma_N} \right) \right]$$

Majorana N

Constraints on $|U_{\mu N}|^2$ and $|U_{\tau N}|^2$

Define theoretically calculable quantities <u>*Br*</u>, canonical branching ratio and <u> Γ </u>, canonical decay width by factoring out unknown $|U_{\mu N}|^2$ from Br and Γ respectively.

$$\Gamma (B \to D\mu N) = |U_{\mu N}|^2 \underline{\Gamma} (B \to D\mu N)$$

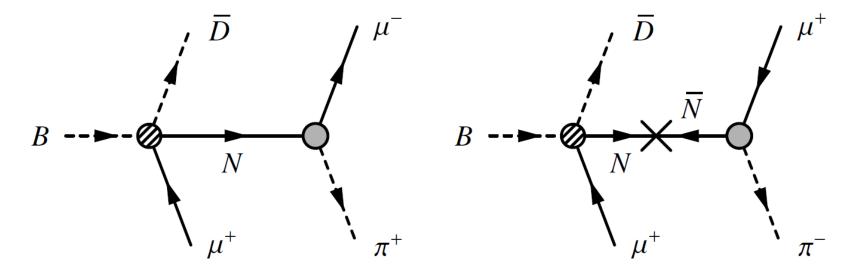
$$\underline{Br} (B \to D\mu N) = \frac{\underline{\Gamma} (B \to D\mu N)}{\Gamma_B}$$

*Note that for $m_N = 0$, $\underline{\Gamma} (B \to D\mu N) = \Gamma (B \to D\mu v)$.

And then we get

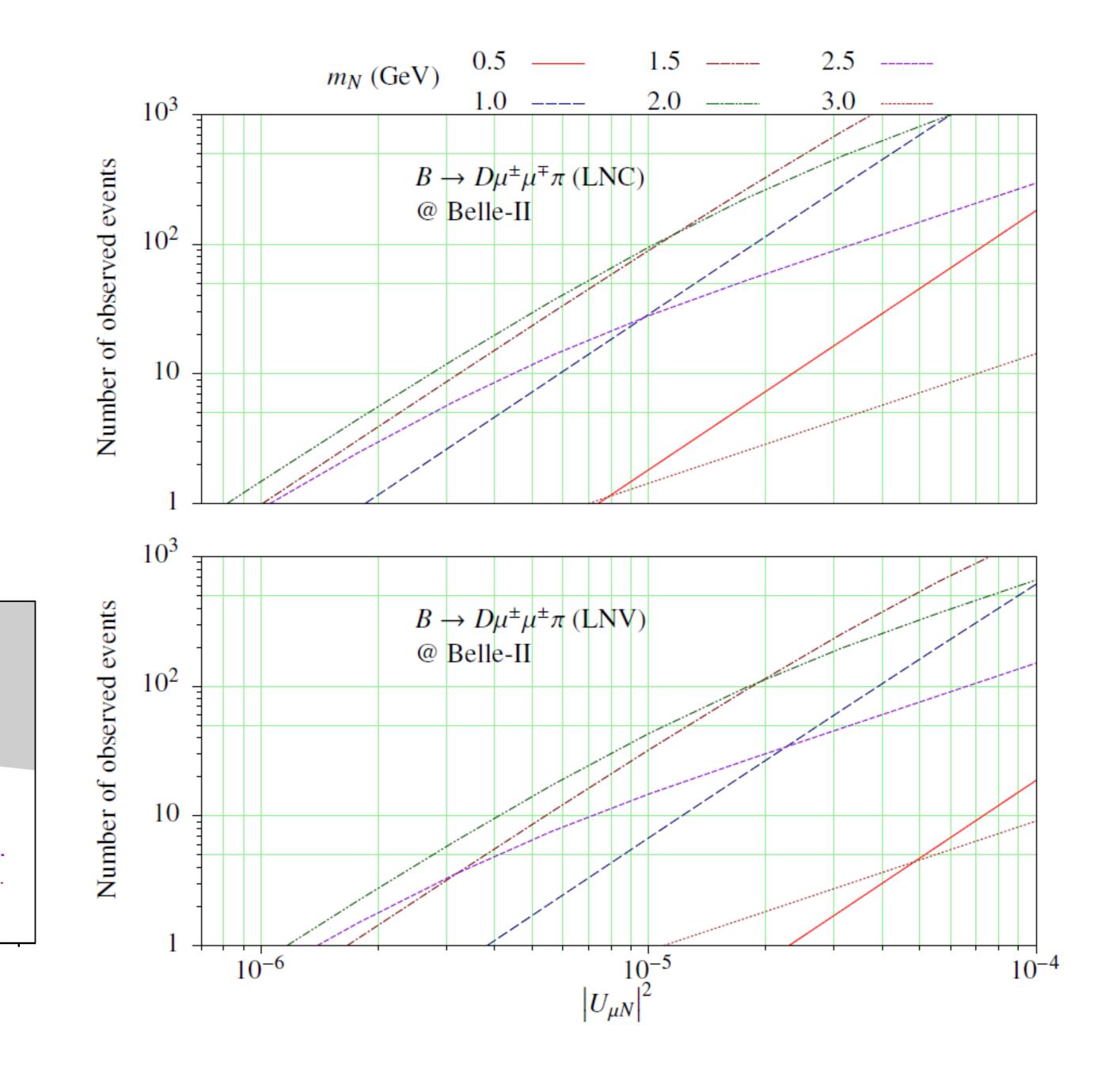
$$BR(B \to D\mu N) = |U_{\mu N}|^2 \underline{Br}(B \to D\mu N) \frac{N_{B \to D\mu N}}{N_B}$$

equivalently,

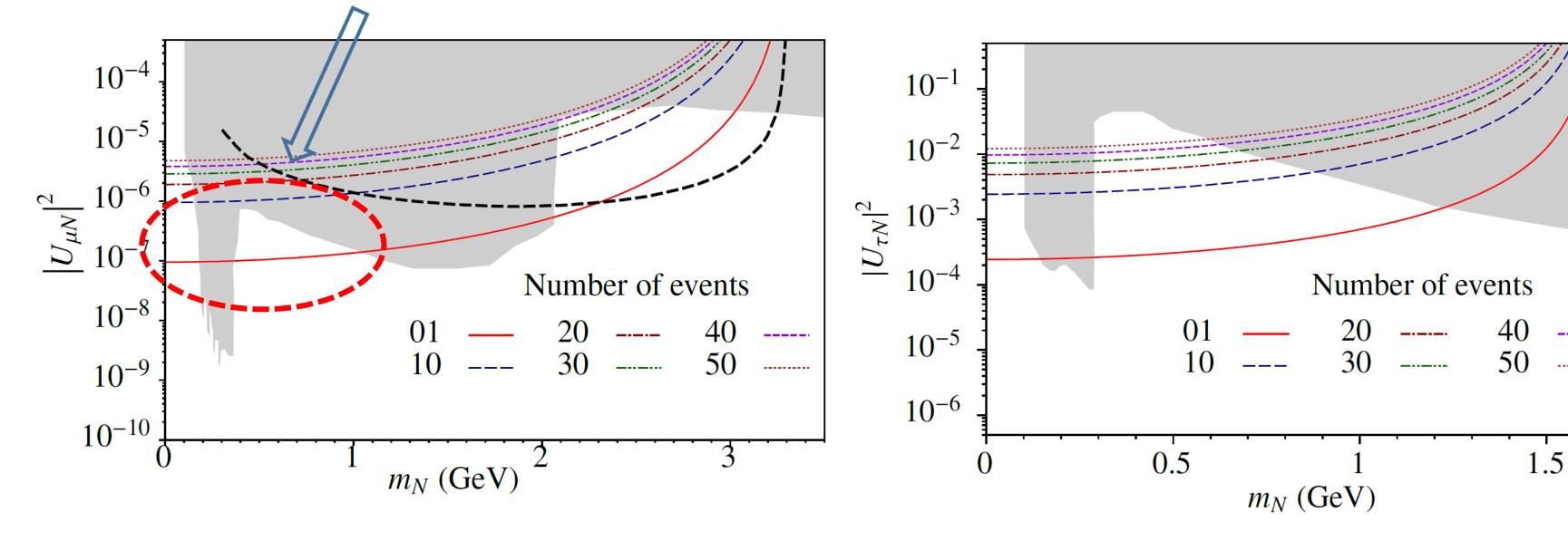

 $|U_{\mu N}|^2 = \frac{N_{B \to D \mu N}}{N_B \underline{Br}(B \to D \mu N)}$

But for first stage of our study (without considering decay of N), only Belle-II type of experiment is available where all the momenta of Initial and final particle except N are measurable.

- 4.8×10^8 fully reconstructed B mesons at Belle-II out of 10^{11}
- 4.8 * 10¹² B mesons at LHCb


Despite 10⁴ times Less N_B , $B \rightarrow D\mu N$ gives competitive results.

- If N is Majorana particle, it can be involved in both LNC and LNV modes.
- If the LNV decay, as in the figure (b) is detected, we can tell the sterile neutrino is Majorana
- The expected observable number of event, and the upper bound on $|U_{\mu N}|^2$ can be similarly calculated as before, considering **helicity flip** of N and additional LNV contributions on Γ_N , which suppress BR_{eff}^{LNV} further.



(a) Both Dirac and Majorana type of *N*

(b) Only Majorana type of N

- ✓ Our proposed search($B \to D\mu N$) at Belle-II will give better constraint on $|U_{\mu N}|^2$ if $m_N < 2.3 GeV$ than the future search using $B \to D\mu\mu\pi$ at LHCb.
- New constraint below 1GeV are found.
- 0.1% chance of full reconstruction of
 τ from its decays is assumed.

