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MOTIVATIONS



MOTIVATIONS

* Weak boson scatterings at high energy provide a direct
probe of the EWSB mechanism.

* New physics particles, such as Z’, W’,or heavy Higgs,
often decay to weak bosons.

» Such weak bosons are generally highly boosted and,

when decaying hadronically, form one collimated jet.
low momentum high momentum

q
W/Z
7

two resolvable jets one boosted fat jet

W/Z




PRBOSON RESONANCE SEARCH

» Using jet mass and jet substructure
properties, ATLAS searched for high-
mass diboson resonances in the mass
range of 1.3 to 3.0 TeV using the
invariant mass distribution of dijets,
each of which tagged as a hadronically
decaying boosted W or Z boson.

- 2-TeV resonances in the WZ, WW and
// channels at 3.40, 2.60 and 2.90,
respectively, were suspected.

- Similar analyses and results by CMS
were also reported.

* No charge information was used.
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PoueLY CHARGED Higgs

* The only possible interactions of doubly-charged Higgs
with SM particles allowed by the symmetries are:

proportional to g and va

g¢vAA++W_W_ + h.c.

ywA_l__l_éZ_gj_ h.c.

Like-sign final states

T t ATLAS 2017
generally LFV, related to HNY % 100 g%éi%\:l:gﬁ?g' 850
neutrino mass and mixing data %J 80 - - 840
0] 882 843 8u2 822 301
- Lots of experimental efforts in the B
scenario with the latter type of e,
interaction being dominant (smaller o 1 S
triplet VEV, thus larger Yukawas). TR T e
w time for the large va scenario A general lower
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QOLDEN CHANNEL

» From differential distributions, particularly
(a) mge and (b) cluster transverse mass

m2 = {\/mQ (60) + p2.(£0) + ’qu 2 — {PT(%) + pT}

one can observe (a) a bump ending at mu:+ and (b) a
Jacobian-like peak edged at mus..

# of Event/ bin

%e;:-,.[cﬁ W % Tl e e R CWGC, Kuo, Yagyu 2013
- Small BR’s for leptonic modes, involving missing energy
w Wwhat about hadronic/semi-leptonic mode (larger BR’s)?

w reliable to determine charge?
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DEEP LEARNING AND
EXISTING JET TAGGERS



MACHINE LEARNING

* ML is the tool used for large-scale data processing and is
well suited for complex datasets with huge numbers of
variables and features (patterns and regularities),
especially for deep learning neural networks (NNs).

» The Universal Theorem: any function can be approximated
by a neural network with at least one hidden layer.

 For a long time, given this theorem and the difficulty in
complex networks, people have restricted themselves to
shallow networks with only one hidden layer.

» Recently, people have realized that deeper, more complex
networks with many hidden layers can understand higher
levels of abstraction than shallow layers.
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ResurRgeENCE OF NN

* NNs had become popular and then forgotten at least twice
before.

* They have resurged in the last decade partly due to:

* having faster computers, with the use of GPUs versus
the traditional use of CPUs,

» better algorithms and neural nets design, and
* increasingly large datasets.
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ARTIFICIAL NEURON

- Different types of artificial neurons are modeled using
different types of activity functions.

weights feed-forward
(synaptic gaps) ﬁ

Lo = 1
xb (: wo) activation or
Internal state .
nonlinear
inputs X W1 Selnkz) -
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PEEP NEURAL NETWORK

20w NN
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COMMON NN TYPES

- Dense neutral network (DNN): a network with standard
fully-connected feed-forward layers that take flattened
vectors as the input, prototypical for most tasks;
sometimes also called multi-layer perceptron (MLP).

» Recurrent neural network (RNN): a network that deals with
sequences of variable length by defining a recurrence
relation over these sequences, suitable for natural
language processing and speech recognition tasks.

 Convolutional neural network (CNN): a network with
special layers that filter data, suitable for computer vision.
m ideal for jet image recognition task in collider physics

*Some evidence shows that neurons in CNNs are organized in a way

similar to biological cells in the visual cortex of the human brain.
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SCRIPT PlgITS RECOGNITION

» One of the most classic example of CNN is recognizing
hand-written digits (with 60,000 training images and
10,000 testing images, and each image being normalized
to 28x28 pixels and have 256 grey levels).
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tensorflow-getting-started/
Data & Labels tensorflow-mnist-beginner

passing test samples to NN gives 14’ 2 CB 6 1 "2 C

: 9-3 8-=0 752 258 6-4
an accuracy of ~99%, with some

g 26
mistakes from time tc,> time: | 859 5 G 1‘ q
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JET TAGGING

* |[n past decade or so, lots of efforts have been spent on

classifying jets using jet substructure, according to the
distribution of energy within jets.

Moreno et al 2019
- In addition to usual QCD jets (light quarks, b-quark, and

gluons), the large collision energy of LHC produces new
classes of jets with collimated prongs, derived from
boosted W, Z, t-quark, or Higgs boson.

» More recently, jet tagging has become one of the deep ML

exercises in particle physics. de Oliveira et al 2016
Larkoski, Moult, Nachman 2017/
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EXISTING JET CLASSIFIERS
- Jet flavor (light or heavy origin) tagging Guest et al 2016

: Pearkes, Fedorko, Lister; Gay 2017/
° TOP tagglng Egan, Fedorko, Lister; Pearkes, Gay 2017/
Kasieczka, Plehn, Russell, Schell 2017
Butter, Kasieczka, Plehn, Russell 2018
Macaluso, Shih 2018
Butter et al 2019

_ Komiske, Metodiev, Schwartz 2017
° Quark/gluon tagglng Butter, Kasieczka, Plehn, Russell 2018

Macaluso, Shih 2018
Fraser; Schwartz 2018

- Boosted Z-jet tagging (from QCD-jets) (ki Ter 2

- Boosted W'jet tagglng (frOm QCD'JetS) Cui, Han, Schwartz 201 |
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OUR TAGGERS



SAMPLE PREPARATION

» Physical process: Slmulatlons

mis = 800 GeV, 2 TeV d parton Ievel processes }
| ™ MGS aMCENTLOv2.6. 1]

Uu *

o

- mpam =

showermg and hadronization
¢ 3 o w PYTHIA 8.2. 19f

SARRESRE

‘detector simulation 7

using exotic Hs**0 decays
in Georgi-Machacek model
@ 13-TeV LHC



_JET SAMPLES

« Jet selection:

MH5 — 800 GeV

Jet sample

pr € (350,450) GeV, |n| <1
jets with anti-k7 and R = 0.7

V-V merging : AR(V1,V5) < 0.6
V-jet matching : AR(V,j) < 0.1

- Sample sizes:

Jet sample size

Training set lTesting set
W+ 188k 38k
W= 198k 40k
A Z-i&.{ 35k

90% : true training set
| 0% : validation set
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HgHer-LEVEL INPUTS

» Traditional analyses make use of higher-level observables:
Jet invariant mass Jet charge

2 2
oo e
ieJ ieJ J ieg

where J denotes a jet, | runs over jet constituents (tracks)
with pt > 500 MeV, q; is the integer charge of | in units of
proton charge, and K is a free parameter.

» Q« is computed in this pt-weighted scheme in the hope of
minimizing mis-measurements from low-pr particles.
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HgHer-LEVEL INPUTS

» Traditional analyses make use of higher-level observables:
Jet invariant mass

vi-(ge) -(T0)

SO0 H vV, m. =800 GeV
O H;
Q)] ‘R=0.7
» The broader widths inthe 8% my,
mass distribution originate = | m,

from a combination of

showering, hadronization,
jet clustering and detector :
effects. 0-01¢
w NO clear boundary

Fraction /
o
o
N

60 70 80 90 100 110 120
Mass [GeV]

2



0.035F H, — v, m_ =800 GeV
90_03_R 0.7, 350<p < 450 GeV
W Wt Z

HgHerR-LEVEL INPUTS

Jet charge

jet charge (x = 0.2)

0
-2 -15 -1-05 0 05 1 15 2

Q,

Fraction / (0.04)

0.04

0.03}

0.02f

pr-welghted scheme:

K =0 m equal-weight
K= | m proportional

» Traditional analyses make use of higher-level observables:

Field, Feynman 1978

to pr

jet charge (x = 0.3)

0.01}

[ H; — VV, m =800 GeV
R=0.7, 350<p < 450 GeV
L W Wt Z

0 |
-2 -15 -1-05 0 05 1 15 2

Q,
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Fraction / (0.04)

o o o o
O © o ©o
-I>01CD\I

jet charge (x = 0.6)

£ H; — VV, m, =800 GeV
- R=0.7, 350<p < 450 GeV
—W w* Z

o0&
—2151050051152

Q,

» The separation is not well because of the choices of
weight factor Kk, jet cone size R, etc.




REFERENCE TAGGERS

- Cut-based tagger
impose simple 2D rectangular cuts in the (M,Qx) plane,
and optimize the overall accuracy

» single-k boosted decision tree (BDT) tagger
choose a specific K, implement with sklearn package,

and assume default parameters

* multi-k boosted decision tree (BDT) tagger
same as above, but allowing k =0.2, 0.3, or 0.4

- All use high-level inputs (M,Qx).

* single-k BDT, when taking the optimal K value, generally
has a comparable performance as the multi-k BDT.
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REFERENCE TAGGERS

 For the ternary (W+/W-/Z) classification task, the reference
taggers can be visualized as follows:

cut-based tagger single-k BDT (K=0.3)

2 -15/1 05

05 1 15 2 2 15 -1 05 0 05\1 15 2

Q
Y-shaped cuts

rectangular cuts
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_JET IMAGES AND CHANNELS

» Deep learning based taggers studied in our work are
based on jet images, utilizing lower-level inputs and
processed by CNNSs.

 Jet images are made from jets reconstructed in a box of
An = AP = 1.6 (central region) with 75 x 75 pixels.
m a resolution consistent with that of the CMS ECal

 The input variables or channels are Q« and pr per pixel.

= now the sum ) is done within each pixel
reJ

25



Lower-LEVEL INPUTS

* Preprocess each image, involving centralization, rotation
and flipping (" jet with larger pr is in first quadrant).

* pT channel:
Jet Image (AvQg) Jet Image (AvQ)
+ + 107
A" LW
0.5 10-2 0.5] i 1073
= 0.0 <= 0.0 :(1)0_4
< . 10_3 < . = __10_4
5_ -3
—0.5 ~0.5 10
104 10-2
-0.5 0.0 0.5 0 -0.5 0.0 0.5
¢’ ¢’

- Z average jet images have a wider distribution in AR than
W jets, as expected from its larger invariant mass.
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Lower-LEVEL INPUTS

* Preprocess each image, involving centralization, rotation
and flipping (" jet with larger pr is in first quadrant).

* Qx channel:

Jet Image (AvQq) Jet Image (AvQq) Jet Image (AvQq)
0.5 W+ I10-2 0.5 W~ Ilo-2 0.5 Z Ilo—z
i 1073 i 1073 11073
= 0.07 0 = 0.0 0 = 0.07 0
.' :—10_3 . :—10_3 : :—10_3
_0.5 I_10—2 _0.5 I_10—2 _0.5 I_10—2
-05 0.0 05 -0.5 0.0 05 -0.5 0.0 05
¢’ ¢’ ¢’

* The average Z jet charge image is close to zero as the
constituent charges in different events tend to cancel out.

27



A TYyPrlicaL CNN

Skansi 2018
Flattening layer
Convolutional layer (convert image to
(3 by 3 local Max-pooling layer vector)
receptive field) (2 by 2 pool) e Fully connected layer
i with one neuron (aka
__________ _e=” logistic regression)
-
y = 0.6453
S ;,....:N“"""“_J b oS-
oo ;__—...‘.::::::::: -------- % . 2 1
"""" three 4 by 4 images \\
three 8 by 8 images "N y

10 by 10 image
single 48-dimensional vector

Fig. 6.3 A convolutional neural network with a convolutional layer, a max-pooling layer, a
flattening layer and a fully connected layer with one neuron
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OUur CNN TAggERS

CNN CNN?
Image (75 x 75) pixels within (|n| < 0.8, |¢| < 0.8)
Channels pr, Ok pT Ok
Architecture BN-32C6-MP2-128C4- BN-32C3-32C3-MP2- BN-32C3-32C3-MP2-
MP2-256C6-MP2-512N- 64C3-MP2-64C3-MP2- 64C4-64C4-MP2-256C6-
512N 64C3-64C3-128C5-256C5- MP2-256N
256IN-256N
Settings Relu Activation, Padding=same, Dropout = 0.5, 12 Regularizer = 0.01
Preprocessing Centralization, Rotation, Flipping
Training Adam Optimizer, Minibatchsize=512, Cross entropy loss

using Keras library with Tensortlow backend
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OUur CNN TAggERS

- a deeper Qg network tends to overfit WH/W-
- a deeper p1 network helps identifying Z

CNN CNN?
Image (75 x 75) pixels withig (|| < 0.8, |¢| < 0.8) v
Channels pr, 9k pT Qs
Architecture BN-32C6-MP2-128C4- BN-32C3-32C3-MP2- BN-32C3-32C3-MP2-
MP2-256C6-MP2-512N- 64C3-MP2-64C3-MP2- 64C4-64C4-MP2-256C6-
512N 64C3-64C3-128C5-256C5- MP2-256N
256IN-256N
Settings Relu Activation, Padding=same, Dropout = 0.5, 12 Regularizer = 0.01
Preprocessing Centralization, Rotation, Flipping
Training Adam Optimizer, Minibatchsize=512, Cross entropy loss

using Keras library with Tensortlow backend
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OUur CNN TAggERS

- a deeper Qg network tends to overfit WH/W-
- a deeper p1 network helps identifying Z

CNN CNN?
Image (75 x 75) pixels withig (|| < 0.8, |¢| < 0.8) v
Channels pr, 9k pT Qs
Architecture BN-32C6-MP2-128C4- BN-32C3-32C3-MP2- BN-32C3-32C3-MP2-
MP2-256C6-MP2-512N- 64C3-MP2-64C3-MP2- 64C4-64C4-MP2-256C6-
512N 64C3-64C3-128C5-256C5- MP2-256N
256IN-256N
Settings Relu Activation, Padding=same, Dropout = 0.5, 12 Regularizer = 0.01
Preprocessing C’eﬁtmlization, Rotation, Flipping
Training Adam Optimizdr, Minibatchsize=512, Cross entropy loss

activated to enable
a deeper network

using Keras library with Tensortlow backend

29



OUur CNN TAggERS

- a deeper Qg network tends to overfit WH/W-
- a deeper p1 network helps identifying Z

CNN CNN?
Image (75 x 75) pixels withig (|| < 0.8, |¢| < 0.8) v
Channels pr, 9k pT Qs
Architecture BN-32C6-MP2-128C4- BN-32C3-32C3-MP2- BN-32C3-32C3-MP2-
MP2-256C6-MP2-512N- 64C3-MP2-64C3-MP2- 64C4-64C4-MP2-256C6-
512N 64C3-64C3-128C5-256C5- MP2-256N
256IN-256N
Settings Relu Activation, Padding=same, Dropout = 0.5, 12 Regularizer = 0.01
Preprocessing C’eﬁtmlization, Rot@tz’on, F lippingf
Training Adam Optimizdr, Minibatchsize=512, Cross ¢ntropy loss

activated to enable
a deeper network
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overfitting

using Keras library with Tensortlow backend



PERFORMANCE OF
OUR TAGGERS

- binary W~ vs Wt
-binary Z vs W+
-ternary W=/ W+ / Z



W/ Wt CLASSIFICATION

 Only charge Qx distribution is useful.

Area Under ROC Curve Accuracy Background Rejection
; ; cut-based| 0.95 ; ; cut-based 30 ; ; cut-based
1.00f e | — - CNN | — CNN | — CNN
| — cnNe 0.90f | — CNN 25| — CNN?
0.95} — e e : ; | ; ; | | ; ;

0.85}
0,90

0.85}
0.88

0.80

075
.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 18.1 0.2 0.3 0.4 0.5 0.6

K K K

- Slightly qualitatively different k dependence for cut-based
taggers, while similar between CNNs.

* CNN slightly better than CNN-2.
» CNNs have a smaller optimal K.
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W/ Wt CLASSIFICATION

- Performance metrics for all taggers, .o Obcuve
except for the single-k BDT, which is & —an
the same as the cut-based one. ma\

=0l N\
Area under ROC curve - S~ |
| IR
R50 AUC ACC 1 30-40% (36% for R50)
cut-based | 16.1372  0.8600  O.7s11 o UM
multi-x BDT | 16.0960 0.8615 0.7820 SIC curve -
CNN 21.9559 0.8895 0.8042 S sy
CNN? 20.5T057 0.8800 0.8Tooo o —aw
+§3.0 — CNN?
background rejection rate best accuracy E: /’;;fi}\
at a 50% signal efficiency " I
working point, (1/€b)|es=50%. — 0
- no gain from CNN?2

0.0 . .
0.0 0.2 0.4 0.6 0.8 1.0

EW -~
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COMPARISON

* Though differing in detalils, our performance gain from
BDT to CNN is comparable to Fraser and Schwartz in their
down/up quark jet discrimination (1-TeV benchmark).

tagger | AUC | mistag rate | ACC
BDT | 0.8602 0.0633 0.7811
CNN | 0.8855 0.0438 0.8042
CNN? | 0.8800 0.0497 0.8000
Network 1000 GeV 1000 GeV
Up Quark Efficiency AUC
RecNIN 0.049 0.876
CNN 0.048 0.879
RNN 0.054 0.874
Residual CNN 0.053 0.877
Trainable kK NN 0.080 0.841

(O]
(V)

1/0.0438

~ 1.45
1/0.0633

gain in background
rejection rate

1/0.048
1/0.068

~ 1.42

Fraser, Schwartz 2018



1.00 ; BDT
095 o
0.90
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07810203 04 05 0.6

Z,/ Wt CLASSIFICATION

* Now the signal (Z) differs from the background (W+) also in
constituent pr distribution.

Area Under ROC Curve

K

Accuracy
0.95F BDT
oo0f e
085
o8
0.75f(
0.70F

01 02 0.3 04 05 0.6

K

- Little K dependence for all.
» CNNZ slightly better than CNN.
- Use same optimal Kk = 0.15 for consistency.
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Z,/ Wt CLASSIFICATION

R50 AUC ACC
| g ‘ ” . cut-based 9.9590 0.8118 0.7705
" va;\]eNrange © W‘?N”gg%'; > single-x BDT | 14.1638  0.8608  0.7875
our LININ taggers enjoy a ~5U% multi-x BDT | 14.2383  0.8611  0.7880
gain In the bac|<grqund rejection CONN 10.4205  0.9091 0.8345
rate by incorporating Qx. CNN?2 52.6028  0.9206 0.8452
ROC curve SIC curve
single-x BDT (M, Q) single-x BDT (M, Q)
cut-based (M) T cut-based (M)
N | T CNN (p1, Q) 6L | CNN (p1, Q)
- CNN (b1) n CNN (p1)
\E — gzzz EpT, Q) = 5 — CNN2 (pr> Q)
e pr) O CNN (pr)
| \ 4l /V\W
' ":7)‘3\ _ LT) 2 // ,~'~.,::::»::=:' i
100} R50 improved by a : \
factor of ~ 2.85 CNN2 outperformmg CNN
10, 02 oz from BDT to CNN’s 3.0 0.6 08 o
€y €Z
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Wt/ W~—/2Z, CLASSIFICATION

- We summarize and compare the performance of the
ternary taggers according to two metrics:
(a) their overall accuracy
number of correct predictions

total number of instances
and

(b) a “one-against-all” metric
one class as “signal” e all the rest as “background”
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W~ OrR Z, VERSUS THE REST

SIC curve SIC curve
4.0 — cut-based — cut-based
W- as signal —~* — miniasor Z as signal —~ — mininsor
—————— | & — aw By — e
ROC curve E“ -~ ROC curve |L& ,,/”"::\
20l L e e O3
“n T R SHd/Z N
‘k R TN - 2 S 1\
3 | — CONN = N |§103 \ —d 3 1%/ \ |
2 \\\\Qk ogleoe e A 14 e —
§§‘ . . . EW _. . . E ) \\\ (‘ . .
\\\ smaller improvement - \\ bigger improvement
1 from CNN to CNNZ o from CNN to CNN?2
02 0.46W8.6 05 10 v o 05 1o
overall signal: W~ signal: Z
ACC R50 AUC  ACC R50 AUC  ACC
cut-based 0.6581 8.0262 0.7893 0.7643 | 10.0882 0.8233 0.7839
single-x BDT | 0.6667 | 12.5230 0.8339 0.7576 | 11.0726 0.8363 0.7725
multi-< BDT | 0.6675 | 12.7115 0.8348 0.7579 | 11.0678 0.8366 0.7726
CNN 0.7197 | 17.3403 0.8715 0.7890 | 32.8981 0.8936 0.8170
CNN? 0.7318 | 19.0907 0.8764 0.7950 | 42.1927 0.9088 0.8334
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FROM TERNARY TO BINARY

» Our ternary taggers should be able to fully recover the
binary taggers after an appropriate “projection.”

« Suppose the ternary NN output class probability is
denoted by Pi(x), where x is adata pointandi=1, ..., Nis
the class label, then the projection to binary classification
between class | and class | is:

cf. Monty Hall problem
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FROM TERNARY TO BINARY

W~ vs W+ Z vs Wt
SIC curve SIC curve
> single-x BDT (projected) 8 single-x BDT (projected)
single-x BDT (binary) -l single-x BDT (binary)
—~a4 | CNN (projected) (| | | — CNN (projected)
+ - CNN (binary) T 6 CNN (binary)
§ — CNN? (projected) é — CNN? (projected)
3} ... CNN? (binary) | CNN?2 (binary)
~— JUE SR . \4—
| & QEW 'e.-..' . “.";..n.
EZ i M \k . | N ~ ‘“.... ‘x
% W 3t
O i ~ \&\
N
_ \ (7) > ™
m 1 ]
1 N
0 ' ' ' ' ' 0 ' ' ' ' '
0.0 0.2 0.4 0.6 0.8 1.0 0.0 : : . 0.8 1.0
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PHASE TRANSITION IN PL

A “phase transition” in the CNN architecture for W+
samples around 25th epoch during training, but not CNNz=.

1.0 1.0

early stopg W - : early stop W -
E — Wt i — Wt
0.9] — Z 0.9 | —Z
00 S-M 00 s-m
0.7- 0.7{
: i
‘ CNN | CNN-2
0.6 —! ' ' ' 0.6 S— ' ' '
0 25 50 75 100 0 25 50 75 100
Epochs Epochs
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SALJENCY MAPS

e The Saliency map IS a way to saliency maps for three W~ samples
visualize how the machine  CNN:prchannel  CNN?: pr channel
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» We apply modern deep learning techniques to build better taggers
of boosted, hadronically-decaying W/Z bosons.

» (Going beyond previous works, we incorporate jet charge
information to discriminate between the charged W bosons, and
between W and Z bosons.

» We construct binary and ternary CNN taggers, taking BDT and
cut-based taggers for comparison, and see significant gains in
classification accuracy and background rejection.

- We propose a novel/better composite CNNZ2 architecture (better
with Z classification), with different depths for pt and Q« channels.

 Our taggers will enhance SM measurements and NP searches
that are sensitive to electric charges of weak bosons.

» Improvement? Find a network that can mix info of pr and Q« and

learn optimal combination of them and fix K.
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Thank You!
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