Inflaton as a decaying dark matter

Yoo-Jin Kang (Chung-Ang University)

Hyun Min Lee (CAU), Soo-Min Choi (CAU), Kimiko Yamashita (National Tsing Hua Univ.)

JHEP 1905, 060 (2019) (arXiv:1902.03781)

25th International Summer Institute on Phenomenology of Elementary Particle Physics and Cosmology (2019)

Motivation & Introduction

Higgs inflation with non-minimal coupling requires large non-minimal coupling for successful inflation. $\xi \thicksim \mathcal{O}(10^4)$

But large non-minimal coupling makes unitarity problem. $\Lambda_{\rm cut-off} <$ *Ek ξ* ∼ *Mp ξ* Soo-Min Choi's talk Introduce a linear non-minimal coupling in sigma model [H. M. Lee (2018)]

$$
\frac{L}{\sqrt{-g}} \supset -\frac{1}{2} (1 + \xi_1 \sigma + \xi_2 \sigma^2 + 2\xi_H |H|^2) R
$$

$$
\xi_1 \sim \sqrt{\xi_2}
$$

$$
\Lambda_{\text{cut-off}} \sim M_p
$$

this σ can be a dark matter?

Model of inflation

Lagrangian in the Jordan frame

$$
\frac{\mathcal{L}}{\sqrt{-g}} = -\frac{1}{2}\Omega(\sigma, H)R + \frac{1}{2}(\partial_{\mu}\sigma)^{2} + |D_{\mu}H|^{2} - V(\sigma, H)
$$
 Let $M_{p} = 1$

$$
-\frac{1}{4g^{2}}V_{\mu\nu}V^{\mu\nu} + \bar{\psi}i\gamma^{\mu}(D_{\mu} + \frac{1}{2}\omega_{\mu}^{ab}\sigma_{ab})\psi - (yH\bar{\psi}_{L}\psi_{R} + \text{h.c.})
$$

Z2 symmetry breaking

$$
\Omega(\sigma, H) = 1 + \xi_1 \sigma + \xi_2 \sigma^2 + 2\xi_H |H|^2
$$

linear non-minimal coupling

$$
V(\sigma, H) = V_0 + \frac{1}{2} m_\sigma^2 \sigma^2 + \frac{1}{4} \lambda_\sigma \sigma^4 + \frac{1}{2} \lambda_{\sigma H} \sigma^2 |H|^2 + m_H^2 + \lambda_H |H|^4
$$

Model of inflation

Choosing $H^T = (0, \phi)/\sqrt{2}$ and performing metric rescaling $g_{\mu\nu} = g_{\mu\nu}^E/\Omega$

Then, Lagrangian in Einstein frame is

$$
\frac{\mathcal{L}_E}{\sqrt{-g}} = -\frac{1}{2}R_E + \frac{1}{2\Omega}(\partial_\mu\sigma)^2 + \frac{3}{4}(\partial_\mu\ln\Omega)^2 + \frac{1}{2\Omega}\left((\partial_\mu\phi)^2 + \delta_V m_{V,0}\frac{\phi^2}{v^2}V_\mu V^\mu\right) - V_E(\sigma, H) -\frac{1}{4g^2}V_{\mu\nu}V^{\mu\nu} + \bar{f}i\gamma^\mu(D_\mu + \frac{1}{2}\omega_\mu^{ab}\sigma_{ab})f - \frac{1}{\Omega^{1/2}}\frac{m_{f,0}}{v}\phi\bar{f}f
$$

do not couple to inflaton

where
$$
\delta_V = 1(2)
$$
 for $V = Z(W)$ and $V_E = \frac{1}{\Omega^2}V$

Model of inflation

Inflaton decay

Taking $\sigma, \phi \ll 1$ near vacuum

[Ibarra et al (2016)]

$$
\mathcal{L}_{int} \approx \xi_1 \sigma \left[-\frac{1}{2} (\partial_\mu \phi)^2 + 2V + \frac{1}{2} m_{f,0} \frac{\phi}{v} \bar{f} f - \frac{1}{2} \delta_V m_{V,0}^2 \frac{\phi^2}{v^2} V_\mu V^\mu \right]
$$

$$
\approx \frac{1}{2} \frac{\xi_1}{\sqrt{1 + \frac{3}{2} \xi_1^2}} \frac{\chi}{M_p} T^\mu_\mu
$$

$$
V \approx V_0 + \frac{1}{2} m_\chi^2 \chi^2 + \frac{1}{4} \lambda_\chi \chi^4 + \frac{1}{4} \lambda_{\chi H} \chi^2 \phi^2 + \frac{1}{2} m_H^2 \phi^2 + \frac{1}{4} \lambda_H \phi^4
$$

$$
\delta_V = 1 \text{ (2) for } V = Z (W)
$$

Inflaton decays to the SM through T^μ_μ only by linear coupling

Inflaton decay

Dark matter production

through non-thermal production!

Dark matter relic abundance : $\Omega_\chi h^2 = (\Omega_\chi h^2)_\text{FIMP} + (\Omega_\chi h^2)_\text{RH}$ 1. **2.**

1. By Higgs decay at temp. $T \gtrsim m_h \longrightarrow \dot{n}_\chi + 3Hn_\chi = 2(\Gamma_{h\to\chi\chi} n_h^{\rm eq} - \Gamma_{\chi\chi\to h} n_\chi^2)$ $(\Omega_{\chi} h^2)_{\rm FIMP}$

2. By inflaton condensate decay during reheating $\longrightarrow (\Omega_{\chi} h^2)_{\text{RH}} = \frac{\rho_{\chi}(a_{\text{eq}})}{\rho_{\chi}/h^2} \left(\frac{a_{\text{eq}}}{a_0}\right)^3$ $(\Omega_\chi h^2)_{\rm RH}$ $BR =$ Γ*χc*→*χχ* $\Gamma_{\chi_c \to \chi \chi} + \Gamma_{\chi_c \to hh}$ = $11.5λ_χ²$ $\rho_{\chi}(a_{\text{eq}}) = (6.75 \times 10^{-38} \text{ GeV}^4) \lambda_{\chi}^{-1/4} \cdot \text{BR} \cdot \left(\frac{\chi}{1 \text{ eV}}\right) \quad \text{&} \quad \frac{1}{N} \cdot \frac{1}{N} = \frac{\lambda_{\text{ref}}}{\Gamma_{\chi_c \to \chi \chi} + \Gamma_{\chi_c \to hh}} = \frac{\lambda_{\text{ref}}}{11.5 \lambda_{\chi}^2 + \lambda_{\chi}^2}$ *mχ* $\frac{m_{\chi}}{1 \text{ eV}}$ &

 $R = \xi_1/\sqrt{\xi_2}$, r: tensor to scalar ratio

Dark radiation

In the case with $T_{\mathrm{NR}} < T_{\mathrm{BBN}}$, dark matter is still relativistic during BBN \rightarrow contribute to ΔN_{eff}

$$
\Delta N_{\text{eff}} = \frac{4}{7} \left(\frac{11}{4}\right) g_* \cdot \frac{\rho_\chi(a_{\text{eq}})}{\rho_R(a_{\text{eq}})} \cdot \left(\frac{a_{\text{NR}}}{a_{\text{eq}}}\right) \qquad R = \xi_1 / \sqrt{\xi_2}
$$

$$
\leq 0.0944 R^{-1} \left(\frac{r}{0.01}\right)^{1/4} \left(\frac{1 \text{ eV}}{m_\chi}\right) \qquad \text{r} \text{ : tensor to scalar ratio}
$$

Consistent with (c) within 2σ , $m_{\chi} \gtrsim 0.208$ (0.139) eV for $R = 1$ (1.5) and $r = 0.01$

(a) $N_{\text{eff}} = 2.93_{-0.23}^{+0.23}$	95% , Planck TT,TE,EE		
Planck 2018	(b) $N_{\text{eff}} = 3.04_{-0.22}^{+0.22}$	$+ \text{lowE} + \text{BAO} + \text{Aver (2015)}$	depending on
(c) $N_{\text{eff}} = 3.06_{-0.22}^{+0.22}$	$+ \text{Peimbert (2016)}$	deuterium fraction	

*Comments : If inflaton \neq dark matter, lighter inflaton can be dark radiation

 \rightarrow related to H_0 tension [A. G. Riess et al (2019)] - 4.4 σ , [K. C. Wong et al (2019)] - 5.3 σ , eariler papers w/ less σ [M. Schmaltz et al (2015)]

Dark matter relic density

 $0.1 \text{ eV} \leq m_{\gamma} \leq 100 \text{ eV}$

Conclusion

Soo-Min Choi's talk

- Inflation model with linear & quadratic non-minimal coupling of sigma field
- Solve the unitarity problem through linear non-minimal coupling with large quadratic non-minimal coupling
- Inflaton = dark matter by non-thermal production $(FIMP + Reheating)$
- $m_{DM} = 0.1 100$ eV for BBN & CMB
- Higgs invisible decay, CMB, XENON10 \rightarrow consistent enough. (CMB for γ -ray : constraints $m_\chi = 2$ MeV \sim)