Long Lived Particle Search with timing information at the HL-LHC

Dong Woo Kang (Yonsei U.)

Based on arXiv:1903.05825 Collaborated with Seong Chan Park (Yonsei U.), Zachary Flowers, Quinn Meier, Christopher Rogan (University of Kansas)

2019-08-20

LLP searches @ collider

- Missing transverse energy
- Displaced vertices
- Non-pointing events (Large impact parameter)
- Disappearing tracks
- Initial state radiation

LLP searches @ collider

- Missing transverse energy
- Displaced vertices
- Non-pointing events (Large impact parameter)
- Disappearing tracks
- Initial state radiation

What else?

Timing detector @ HL-LHC

ATLAS

- High-Granularity Timing Detector at the endcap region
- ~30 ps resolution
- Coverage 2.4 < $|\eta| < 4.0$

CMS

- Minimum ionizing particles (MIPs) Timing Detector (MTD) between tracker and ECAL
- ~30 ps resolution for charged tracks
- Coverage $|\eta| < 3.0$

[CERN-LHCC-2017-027/LHCC-P-009]

Timing detector @ HL-LHC

Neutral LLP search example

How can we solve this kind of system?

2019-08-20

Sol1: Reconstruction without timing

Sol2: Reconstruction with timing

Sol1: Reconstruction without timing

6 d.o.f become two 3-momenta

[M. Park and Y. Zhao, 1110.1403] [G. Cottin, 1801.09671]

- \hat{r}_a, \hat{r}_b 4 d.o.f
- p_T^{miss} 2 d.o.f
- 3-momenta of LLPs

$$\boldsymbol{p}_{a} = \frac{\hat{r}_{b} \times (\boldsymbol{p}_{I} + \boldsymbol{p}_{V_{a}} + \boldsymbol{p}_{V_{b}}) \cdot \boldsymbol{k}}{\hat{r}_{b} \times \hat{r}_{a} \cdot \hat{\boldsymbol{k}}} \hat{r}_{a}$$
$$\boldsymbol{p}_{b} = \frac{\hat{r}_{a} \times (\boldsymbol{p}_{I} + \boldsymbol{p}_{V_{a}} + \boldsymbol{p}_{V_{b}}) \cdot \hat{\boldsymbol{k}}}{\hat{r}_{a} \times \hat{r}_{b} \cdot \hat{\boldsymbol{k}}} \hat{r}_{b}$$

3-momenta of invisible particles $p_{I_a} = p_a - p_{V_a}$ $p_{I_b} = p_b - p_{V_b}$

4-momentum conservation

$$\begin{array}{c} m_{a}^{2} = m_{I_{a}}^{2} + m_{V_{a}}^{2} + 2E_{V_{a}}\sqrt{m_{I_{a}}^{2} + |\boldsymbol{p}_{I_{a}}|^{2}} - 2\boldsymbol{p}_{V_{a}} \cdot \boldsymbol{p}_{I_{a}} \\ m_{b}^{2} = m_{I_{b}}^{2} + m_{V_{b}}^{2} + 2E_{V_{b}}\sqrt{m_{I_{b}}^{2} + |\boldsymbol{p}_{I_{b}}|^{2}} - 2\boldsymbol{p}_{V_{b}} \cdot \boldsymbol{p}_{I_{b}} \end{array}$$

We can find 1 or 2 positive mass pairs with 2 assumptions

$$m_a = m_b, m_{I_a} = m_{I_b}$$

Sol2: Reconstruction with timing

6 d.o.f become two 3-momenta

• \hat{r}_a, \hat{r}_b 4 d.o.f

- p_T^{miss} 2 d.o.f
- 3-momenta of LLPs $p_{a} = \frac{\beta_{b} \times (p_{I} + p_{V_{a}} + p_{V_{b}}) \cdot \hat{k}}{\beta_{b} \times \beta_{a} \cdot \hat{k}} \beta_{a}$ $p_{b} = \frac{\beta_{a} \times (p_{I} + p_{V_{a}} + p_{V_{b}}) \cdot \hat{k}}{\beta_{a} \times \beta_{b} \cdot \hat{k}} \beta_{b}$
- 3-momenta of invisible particles $p_{I_a} = p_a p_{V_a}$ $p_{I_b} = p_b p_{V_b}$

2 Timing information

•
$$\boldsymbol{\beta}_a = \hat{r}_a/T_a$$
 , $\boldsymbol{\beta}_b = \hat{r}_b/T_b$

We can find unique mass pairs without assumptions

Case1: $LLP_a = LLP_b$, $I_a = I_b$

2019-08-20

MC result: Sol1

$$M_{LLP_a} = M_{LLP_b} = 400 \text{ GeV}$$

 $M_{I_a} = M_{I_b} = 200 \text{ GeV}$

MC result: Sol2

$$M_{LLP_a} = M_{LLP_b} = 400 \text{ GeV}$$

 $M_{I_a} = M_{I_b} = 200 \text{ GeV}$

MC result: Sol1 vs Sol2

Case2: $LLP_a \neq LLP_b$, $I_a \neq I_b$

2019-08-20

MC result: Sol2

M_{LLP_a} : 300 GeV, M_{LLP_b} : 600 GeV M_{I_a} : 100 GeV, M_{I_a} : 300 GeV

MC result: Sol2

M_{LLP_a} : 300 GeV, M_{LLP_b} : 600 GeV M_{I_a} : 100 GeV, M_{I_a} : 300 GeV

2019-08-20

LLP decay angle

We can reconstruct the entire event including the LLP decay angle, which can be used to remove poorly-measured events

Summary

	m_{LLP_1}	m_{LLP_2}	m_{I_1}	m_{I_2}	p_{LLP_1}	p_{LLP_2}	p_{I_1}	p_{I_2}
Case 1 no timing	\bigtriangleup	\bigtriangleup	\bigtriangleup	\triangle	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$LLP_a = LLP_b, I_a = I_b \text{ timing}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Case2 no timing	×	×	×	×	\bigcirc	\bigcirc	\bigcirc	0
$LLP_a \neq LLP_b, I_a \neq I_b$ timing	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

- Using timing information at HL-LHC we can measure the β of the long-lived particles.
- We can fully reconstruct the LLP events even if they decay to visible and invisible particles.
- Timing reconstruction method will flash the LLP searches at HL-LHC.

Primary vertex uncertainty

Time stamping

[J. Liu, Z. Liu and L. Wang, 1805.05957]

[M. Drewes, A. Giammanco, J. Hajer, M. Lucente, O. Mattelaer 1810.09400]

- For heavy ion collision, there is no Pile-up.
 - All tracks come from the same vertex.
 - \rightarrow No uncertainty in primary vertex position.

Timing detector resolution

Monte Calro Simulation

- Event simulation with MG5_aMC+Pythia8
- Smearing
 - Position 12 μm
 - Momentum 2%
 - Timing 30ps

• Case1:
$$LLP_a = LLP_b$$
, $I_a = I_b$
 $M_{LLP_a} = M_{LLP_b} = 400 \text{ GeV}$
 $M_{I_a} = M_{I_b} = 200 \text{ GeV}$
• Case2: $LLP_a \neq LLP_b$, $I_a \neq I_b$
 M_{LLP_a} : 300 GeV, M_{LLP_b} : 600 GeV
 M_{I_a} : 100 GeV, M_{I_a} : 300 GeV