25th International Summer Institute on Phenomenology of Elementary Particle Physics and Cosmology (SI 2019) 20 August 2019 @Gangneung, Korea

Entropy production from decay of the GeV scale right-handed neutrinos and the primordial gravitational wave

Hisashi Okui (Niigata Univ.)

Collaboration with

Takehiko Asaka (Niigata Univ.)

In preparation

Outline

- **1. Introduction**
- 2. Entropy production
- 3. Primordial gravitational wave
- 4. Summary

1. Introduction

GeV scale right-handed neutrinos

Seesaw mechanism that can explain tiny neutrino masses

Minkowski '77 Yanagida '79 Gell-mann, Ramona, Slansky '79 Glashow '79

Baryogenesis via neutrino oscillation

Akhmedov, Rubakov, Smirnov '98 Asaka, Shaposhnikov '05

Testability

F.F.Deppisch, P.S.Bhupal Dev, A.Pilaftsis '15

1. Introduction

HNL search

F.F.Deppisch, P.S.Bhupal Dev, A.Pilaftsis '15

1. Introduction

Are there any other methods for exploring RH neutrinos?

→ Entropy production due to decay of RHvs that modifies the gravitational wave spectrum.

Seesaw mechanism

Extension by right-handed neutrinos

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{\nu}_R \partial_\mu \gamma^\mu \nu_R - F\bar{L}\nu_R \Phi - \frac{M_M}{2}\bar{\nu}_R \nu_R^c + h.c.$$

Seesaw mechanism (type I)

$$-\mathcal{L}_{M} = \frac{1}{2} \left(\bar{\nu}_{L}, \bar{\nu}_{R}^{c} \right) \begin{pmatrix} 0 & M_{D} \\ M_{D}^{T} & M_{M} \end{pmatrix} \begin{pmatrix} \nu_{L}^{c} \\ \nu_{R} \end{pmatrix} + h.c. = \frac{1}{2} \left(\bar{\nu}, \bar{N} \right) \begin{pmatrix} M_{\nu} & 0 \\ 0 & M_{M} \end{pmatrix} \begin{pmatrix} \nu^{c} \\ N \end{pmatrix}$$
$$M_{\nu} = -M_{D}^{T} M_{M}^{-1} M_{D} \quad (M_{\nu} \ll M_{D})$$

Mixing of light neutrinos and heavy neutrinos

$$\nu_L = U\nu + \Theta N^c$$
$$\Theta = \frac{M_D}{M_M} = \frac{F \langle \Phi \rangle}{M_M}$$

Decay of right-handed neutrinos

Scenario

Entropy production

Entropy production

Hisashi Okui (Niigata Univ.)

Primordial gravitational wave

Hisashi Okui (Niigata Univ.)

SI2019 @Gangneung, Korea

3. Primordial gravitational wave

Modified spectrum by GeV scale RH neutrino

Hisashi Okui (Niigata Univ.)

Primordial gravitational wave

4. Summary

Summary

- If the lifetime of the right-handed neutrino is long enough, the right-handed neutrinos can realize the entropy production in the early universe.
- The entropy production changes the thermal history of the universe and affects the primordial gravitational spectrum.
- Dilution of primordial gravitational wave spectrum by entropy production of right-handed neutrinos starts to occur from about 10⁻¹¹ - 10⁻⁸ Hz (SKA range).