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Supplimentary slides to K. Ban’s talk today (Tue)



  

What and why do we do?



  

Methods of Mathematical Modeling

← description of Machine Learnings as 
deep learnings



  

Success of Physics

Great Success of Physics .

This 1 page SM can predict a huge number of phenomena in weak 
scale !

[ in PDG book, see H. Murayama’s talk (Sun) ]



  

Success of Machine Learning .

Image Recognition (ImageNet)

: Deep Neural Nets in ~O(10GBytes) can predict the correct class of 
~1 million images in total 1000 classes,  

with top-5 error less than ~ 3% 



  

Can we combine the advantages of the two?

→ How to create a NN architecture 
which can encode physics with 

elementary mathematical objects ?



  

Methods of Mathematical Modeling

→ We want to build an NN architecture which can be trained data-driven 
way using back-propagation, so every neuron object can have its own 
physical abstraction by elementary functions.    



  

Actually, usual DNN requires lots of data for here and there, . to 
learn and build a good model toward the model in ground-truth, 
without bias / overfiing.

Such a strong data dependency of deep learning, may be a severe 
defect, if toward an AI architecture especially using the data of 
physical science which possesses more robust mathematical 
relations inside, and we believe that good ML models for physical 
science should be trained valid everywhere without entire data 
coverage, like as we believe that the physics laws which is 
discovered and proven to be valid here, is then valid everywhere, 
for a given energy or multiplicity scale.
 

  → ‘Universality of Scientifc ML models’

Failures of Deep Learning .



  

One tiny failure . 
(may be BIG for the universality of DL models)

→ DNNs cannot even learn simple arithmetic operations 
in a domain-region free way.

Exp) Identity Op (x → x) Exp) Arithmetic Ops



  

The model’s universality cannot be improved by 
increasing model’s capacity / 

by training-procedure optimization. 
 

It is a maier of architecture itself, especially on 
how to encode non-linearities.



  

 Our approach (to control or improve the model’s 
universality) is to embed the structure of ‘function 
approximation in power series’ inside the DNN, in a 
trainable way using back-propagation, while borrowing 
main non-linearities from the power series, rather than 
from the activations.

We can handle the errors in exterior region by increasing 
layer’s power, and also by disconnecting unnecessary 
connections by exactly zero-weights quantized.



  

Actually, power series expansion is a conventional way for 
many modern computers to approximate the elementary 
functions – which are the basic building blocks for 
representing the physics law.

→ Why not in DNN for scientifc data?



  

 Architecture of 
CALU

(Complex-valued Neural Arithmetic Logic Unit)
with Neural Qantizer

Exp1) learning basic arithmetic operations 
(+,-,×,÷)

Exp2) learning polynomial functions  
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One CALU layer in a Complex-Valued Neural Network 

CALUm : 
for multiplication/div. with 
(quantized) power op.

CALUa : 
for addition/sub. with 
(quantized) scaling



  

One CALU layer in a Complex-Valued Neural Network 

CALUa : 
for addition/sub. with 
(quantized) scaling

CALUm : 
‘exp-add-log’ structure with complex-log(x) in CVNN 
can enable us to do multiplication op. with the inputs of 
any phases, also with weights being consistently trainable 
using back-propagation of CVNN.



  

Neural Qantizer, N

● Expectation value of picking a quantized value in a set Q, with each element 
n, weighted by the probability P(n) modeled by softmax function with 
learnable parameters, N-hats for each n.

● Q is a set of quantized values (in general C), which can encode any values 
from dynamics.

    ex) Q = {-2,-1,0,1,2} with the unit phasor W = 1 → R-valued total weights

    ex) Q = {0,1,2,.,Nmax} with W = exp [ i π σ] → C-valued total weights

● k, j : node indexes connecting layers
● Nkj is asymptotically stabilized and trained to be a Qi, in back-propagation

→ coupled Boltzmann transport equation.



  

Behavior of Neural Qantizer, N

 ex) Q = {-2,-1,0,1,2} 



  

Behavior of Neural Qantizer, N

 ex) Q = {-2,-1,0,1,2} 



  

CALUa  

CALUm 

● can be trained into the quantized phases ({0,pi})   
● so the overall sign of weights {+1, -1} can be trained in the complex-domain, 

with learnable parameters, theta-hats
● trainable, if Q consists of all positive numbers, otherwise just set to 1.

Unit Phasor 

all in all .

● linear layer with scaling weights (N∘W) quantized in Q for addition and 
subtraction.

● exp-add-log layer with powering weights (N∘W) quantized in Q for mul. and div.
● The frst NN architecture which can learn the multiplication and division op. of input 

variables in general domain, trainable using BP, in precision with universality.



  

● for boosting the training of neural quantizer
● Ekj→ 0 for Nkj=n , also in preference of adjacent modes for jumping into.     

Regularization Potential 



  

 Experiments



  

Experiment 1.  Regression to a constant (1)



  

Experiment 1.  Regression to a constant (1)



  

Experiment 2.  Regression as identity



  

Experiment 2.  Regression as identity



  

Experiment 3.  Elementary Arithmetic Operations



  

Experiment 3.  Elementary Arithmetic Operations



  

Experiment 4.  Multinomial Expansion



  

Experiment 4.  Multinomial Expansion



  

Experiment 5.  Learning 3 Lorentz scalars in 2 four-vectors



  

Experiment 5.  Learning 3 Lorentz scalars in 2 four-vectors



  

New classifcation model with new feature extraction by CALUs
 

with Kayoung Ban (talk today), Sungyeop Lee, Chanju Park, and Seong Chan Park

→ Re-discoverying the Lorentz Invariance using CALU flters

→ Trained discriminative model becomes universal, 
beyond the region of training sample



  

K. Ban’s slide



  



  

K. Ban’s slide



  

K. Ban’s slide



  

K. Ban’s slide



  

Conclusion
● We designed a new NN architecture – CALU with Neural Qantizer which 

can learn the elementary arithmetic operations in general complex-variable 
domain, trainable using back-propagation, in precision with universality.

● CALU nets have demonstrated its ability for extracting the exact physical 
invariance (Lorentz invariance) hidden in data, just under some classifcation 
pressure.

● As an individual neuron (ex. caluon) gets more clear its own interpretation, 
dynamics between them becomes more and more important :  

→ need for embedding symmetries and interactions among neurons

→ ex) Exclusive Qantization of caluon states

→ CALU representation of feld theory, in general complex-domain

● Data-driven modeling and Principle/symmetry-based modeling are 
converging gradually.



  

ADVERTISEMENT

XAIENCE 2019
= eXplainable/crossing-over + AI + sciENCE

- Workshop on AI applications for science, and vice-versa

- hips://www.xaience.cc

- 2019 11.07 (Thu) – 08 (Fri),  @ SNU  

- We welcome your participation !

https://www.xaience.cc/
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