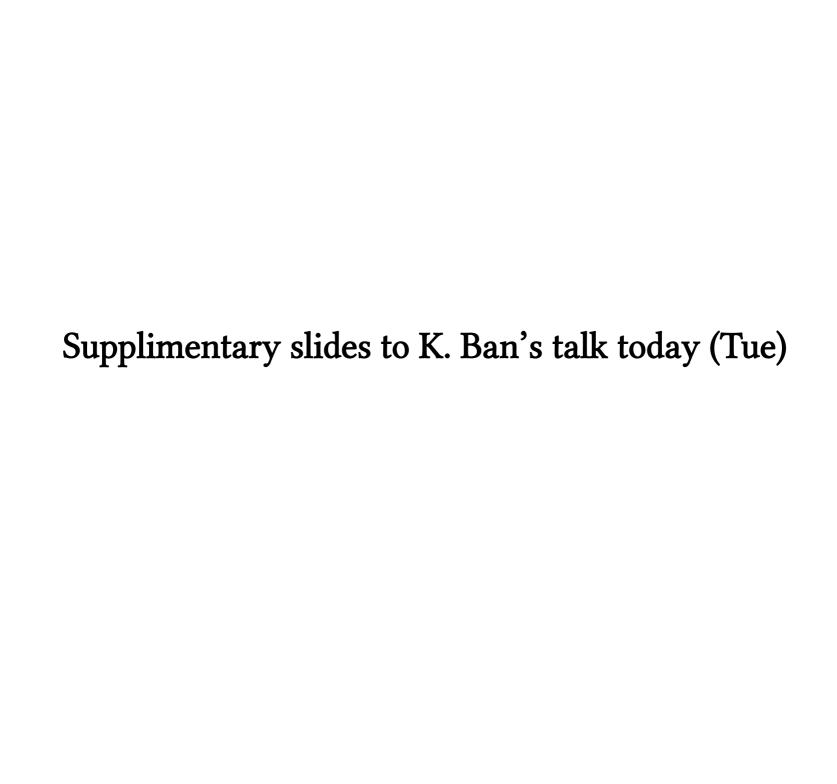
CALU

: Complex-Valued Neural Arithmetic Logic Unit with Neural Quantizer for the Abstraction of Physical Symmetries in the Nature

Wonsang Cho (Seoul National University)

in collaboration with Kayoung Ban, Dongsub Lee, Sungyeop Lee, Chanju Park

Summer Institute in Gangneung 2019 Aug 20



What and why do we do?

Methods of Mathematical Modeling

Models	Statistical/Machine Learning	Physics
Object Function	$E\left(f_k(f_j(f_0(x w_0) w_j) w_k)\right)$	$\mathcal{L}(\phi(x), \dot{\phi} \mid \alpha)$
Dynamical E.O.M	$\min_w E$	$\delta \mathcal{L} = 0$
Dynamical Index	data feeding sequence	time
Rep. (dynamical d.o.f)	neurons in w space, $f_i(x w)$	fields , $\phi_i(x)$ with spin
Rep. (master obj. function)	connections of neurons	operators under symmetries
Interactions	by regularizations	with coupled mediators
Model Parameters	Many, $W(\text{connec. weights})$	Few, α (coupl.),
Model Capacity	Flexible (for any system)	Limited (for effective system)
Interpretability (1 dyn. obj)	not interpretable	physical/meaningful
Interpretability (1 par.)	not interpretable	physical/meaningful
Model Search	data-driven	principle/symmetry-driven
Role of Constraints/Sym./Reg.	secondary	primary
Validity of Model	in x_{training}	in all x of eff. system (physics law)

← description of Machine Learnings as deep learnings

```
 \mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a} - g_{s} f^{abc} \partial_{\mu} g_{\nu}^{a} g_{\mu}^{b} g_{\nu}^{c} - \frac{1}{4} g_{s}^{2} f^{abc} f^{ade} g_{\mu}^{b} g_{\nu}^{c} g_{\mu}^{d} g_{\nu}^{e} - \partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - M^{2} W_{\mu}^{+} W_{\mu}^{-} - \frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - i g c_{w} (\partial_{\nu} Z_{\mu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{-} W_{\nu}^{-}) - Z_{\nu}^{0} (W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}) + Z_{\mu}^{0} (W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+})) - i g s_{w} (\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\nu}^{-}) - A_{\nu} (W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}) + A_{\mu} (W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+})) - \frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\nu}^{+} W_{\nu}^{-} + \frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\mu}^{+} W_{\nu}^{-} + g^{2} c_{w}^{2} (Z_{\mu}^{0} W_{\mu}^{+} Z_{\nu}^{0} W_{\nu}^{-} - Z_{\mu}^{0} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}) + g^{2} s_{w} (A_{\mu} W_{\mu}^{+} A_{\nu} W_{\nu}^{-} - A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}) + g^{2} s_{w} c_{w} (A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-}) - W_{\nu}^{+} W_{\mu}^{-}) - 2 A_{\mu} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}) - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - 2 M^{2} \alpha_{h} H^{2} - \partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-} - \frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0} - g_{\mu}^{0} W_{\mu}^{+} W_{\mu}^{-}) + \frac{2 M^{4}}{g^{2}} \alpha_{h} - g_{\mu}^{0} M_{\mu}^{0} (H^{3} + H \phi^{0} \phi^{0} + 2 H \phi^{+} \phi^{-}) - W_{\mu}^{0} W_{\mu}^{-} - W_{\mu}^{0} W_{\mu}^{0} W_{\mu}^{0} + 2 H \phi^{+} \phi^{-}) - W_{\mu}^{0} W_{\mu}^{0} W_{\mu}^{0} + 2 H \phi^{+} \phi^{-}) - W_{\mu}^{0} W_{\mu}^{0
```

Great Success of Physics ...

 $\frac{1}{2}ig\left(W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{0})-W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})\right)+\\\frac{1}{2}g\left(W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}g\frac{1}{c_{w}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{0})$

This 1 page $SM_{\nu_{\mu}}^{(1)}(w_{\mu}^{-1}) = 0$ in weak $SM_{\nu_{\mu}}^{(2)}(w_{\mu}^{-1}) = 0$ in weak $SM_{\nu_{\mu}}^{(2)}(w_{\mu}^{-1}) = 0$ in weak $SM_{\nu_{\mu}}^{(2)}(w_{\mu}^{-1}) = 0$ in $SM_$

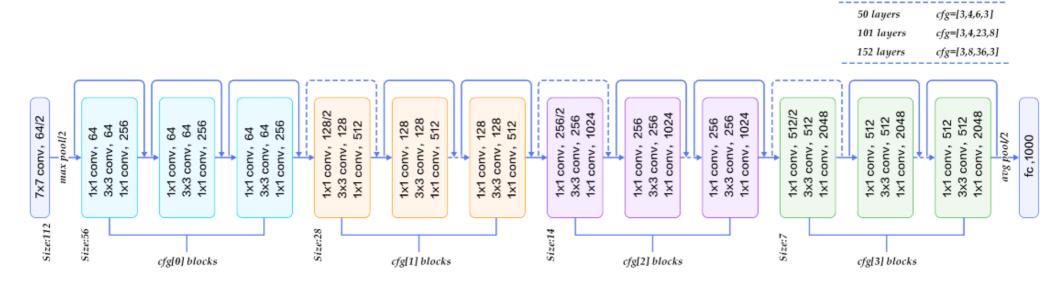
[in PDG book, see H. Murayama's talk (Sun)]

$$\begin{split} & m_{\alpha}^{\lambda})u_{j}^{\lambda} - d_{j}^{\lambda}(\gamma\partial + m_{\alpha}^{\lambda})d_{j}^{\lambda} + igs_{w}A_{\mu}\left(-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{j}^{\lambda}\gamma^{\mu}u_{j}^{\lambda}) - \frac{1}{3}(d_{j}^{\lambda}\gamma^{\mu}d_{j}^{\lambda})\right) + \\ & \frac{ig}{2\omega}Z_{\mu}^{0}\{(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (d_{j}^{\lambda}\gamma^{\mu}(\frac{1}{3}s_{w}^{2}-1-\gamma^{5})d_{j}^{\lambda}) + \\ & (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}+\gamma^{5})u_{j}^{\lambda})\} + \frac{ig}{2\sqrt{2}}W_{\mu}^{\mu}\left((\bar{v}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}_{\lambda\kappa}e^{\kappa}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})\right) + \\ & \frac{ig}{2\sqrt{2}}W_{\mu}^{-}\left((\bar{e}^{\kappa}U^{lep}_{\lambda}\lambda^{\mu}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})\right) + \\ & \frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{v}^{\lambda}U^{lep}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa}) + m_{\nu}^{\lambda}(\bar{v}^{\lambda}U^{lep}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa}\right) + \\ & \frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}(1+\gamma^{5})\nu^{\kappa}) - m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}(1-\gamma^{5})\nu^{\kappa}\right) - \frac{g}{2}\frac{m_{\alpha}^{\lambda}}{M}H(\bar{v}^{\lambda}\nu^{\lambda}) - \\ & \frac{ig}{2M}(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2M}\phi^{0}(\bar{v}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ig}{2}\frac{m_{\alpha}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa} - \\ & \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa} + \frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + \\ & \frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{\alpha}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\lambda}(1+\gamma^{5})u_{j}^{\kappa}) - m_{\kappa}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\lambda}(1-\gamma^{5})u_{j}^{\kappa}) - \frac{g}{2}\frac{m_{\alpha}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) - \\ & \frac{ig}{2M}M^{\lambda}(1-\gamma_{5})\hat{\nu}_{\kappa} + \frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + \\ & \frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{\alpha}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\lambda}(1+\gamma^{5})u_{j}^{\kappa}) - m_{\kappa}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\lambda}(1-\gamma^{5})u_{j}^{\kappa}) - \frac{g}{2}\frac{m_{\alpha}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) - \\ & \frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{\alpha}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\lambda}(1+\gamma^{5})u_{j}^{\kappa}) - m_{\alpha}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\lambda}(1-\gamma^{5})u_{j}^{\kappa}) + \bar{g}_{\alpha}^{2}\bar{u}_{\alpha}^{\lambda}\bar{u}_{\alpha}^{\lambda}\right) - \\ & \frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{\alpha}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\lambda}(1+\gamma^{5})u_{j}^{\lambda}) - m_{\alpha}^{\kappa}(\bar{d}_{j}^{\lambda}C_$$

Success of Machine Learning ...

Image Recognition (ImageNet)

: Deep Neural Nets in ~O(10GBytes) can predict the correct class of ~1 million images in total 1000 classes, with top-5 error less than ~ 3%



Can we combine the advantages of the two?

→ How to create a NN architecture which can encode physics with elementary mathematical objects?

Methods of Mathematical Modeling

Models	Statistical/Machine Learning	Physics
Object Function	$E\left(f_k(f_j(f_0(x w_0) w_j) w_k)\right)$	$\mathcal{L}(\phi(x), \dot{\phi} \mid \alpha)$
Dynamical E.O.M	$\min_w E$	$\delta \mathcal{L} = 0$
Dynamical Index	data feeding sequence	time
Re way using back-prop	an NN architecture which of agation, so every neuron ob oy elementary functions.	
Model Parameters	Many, W (connec. weights)	Few, α (coupl.),
Model Capacity	Flexible (for any system)	Limited (for effective system)
Interpretability (1 dyn. obj)	not interpretable	physical/meaningful
Interpretability (1 par.)	not interpretable	physical/meaningful
Model Search	data-driven	principle/symmetry-driven
Role of Constraints/Sym./Reg.	secondary	primary

in x_{training}

Validity of Model

in all x of eff. system (physics law)

Failures of Deep Learning ...

Actually, usual DNN requires lots of data for here and there, ... to learn and build a good model toward the model in ground-truth, without bias / overfitting.

Such a strong data dependency of deep learning, may be a severe defect, if toward an AI architecture especially using the data of physical science which possesses more robust mathematical relations inside, and we believe that good ML models for physical science should be trained valid everywhere without entire data coverage, like as we believe that the physics laws which is discovered and proven to be valid here, is then valid everywhere, for a given energy or multiplicity scale.

→ 'Universality of Scientific ML models'

One tiny failure ... (may be BIG for the universality of DL models)

→ DNNs cannot even learn simple arithmetic operations in a domain-region free way.

Exp) Identity Op $(x \rightarrow x)$

	tanh	ReLU
Interp. Error	$< \mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-6})$
Extrap. Error	$< \mathcal{O}(10^{+3})$	$< \mathcal{O}(10^{+3})$

Exp) Arithmetic Ops

		tanh	ReLU
n E	$x_1 + x_2$	$< \mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-6})$
latio	$x_1 - x_2$	$<\mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-6})$
erpo	$x_1 * x_2$	$<\mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-6})$
Inte	x_1/x_2	$<\mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-6})$
on E	$x_1 + x_2$	$<\mathcal{O}(10^{+3})$	$< \mathcal{O}(10^{+3})$
latic	$x_1 - x_2$	$<\mathcal{O}(10^{+3})$	$< \mathcal{O}(10^{+3})$
rapo	$x_1 * x_2$	$<\mathcal{O}(10^{+3})$	$< \mathcal{O}(10^{+6})$
Ext	x_1/x_2	$<\mathcal{O}(10^{+3})$	$<\mathcal{O}(10^{+7})$

The model's universality cannot be improved by increasing model's capacity / by training-procedure optimization.

It is a matter of architecture itself, especially on how to encode non-linearities.

Our approach (to control or improve the model's universality) is to embed the structure of 'function approximation in power series' inside the DNN, in a trainable way using back-propagation, while borrowing main non-linearities from the power series, rather than from the activations.

We can handle the errors in exterior region by increasing layer's power, and also by disconnecting unnecessary connections by exactly zero-weights quantized.

Actually, power series expansion is a conventional way for many modern computers to approximate the elementary functions – which are the basic building blocks for representing the physics law.

→ Why not in DNN for scientific data?

Architecture of CALU

(Complex-valued Neural Arithmetic Logic Unit) with Neural Quantizer

Exp1) learning basic arithmetic operations $(+,-,\times,\div)$

Exp2) learning polynomial functions

Related Works

1) Neural Arithmetic Logic Unit (NALU)

A. Trask, F. Hill, S. Reed, J. Rae, C. Dyer, P. Blunsom [arXiv:1808.00508]

2) Binary/Ternary connected networks

M. Courbariaux, Y. Bengio, Jean-Pierre David [arXiv:1511.00363] Zhouhan Lin, M. Courbariaux, R. Memisevie, Y. Bengio [arXiv:1510.03009] C. Zhu, S. Han, H. Mao, W. J. Dally ['Trained Ternary Quantization']

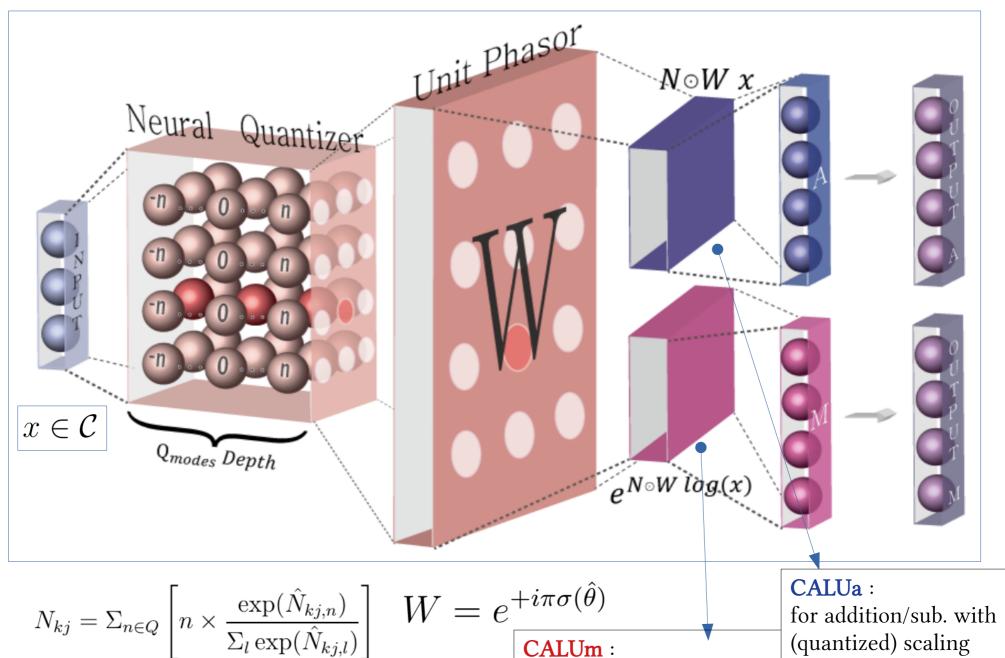
• • •

3) Complex-valued neural networks

T. Kim, T. Adah ['Approximation by Fully Complex Multilayer Perceptrons']
T. Nitta ['An Extension of the BP algorithm to complex numbers']
C. Trabelsi et. al. ['Deep Complex Networks']
N. Guberman ['On Complex-Valued CNN']

. . . .

One CALU layer in a Complex-Valued Neural Network



$$N_{kj} = \Sigma_{n \in Q} \left[n \times \frac{\exp(\hat{N}_{kj,n})}{\Sigma_l \exp(\hat{N}_{kj,l})} \right]$$

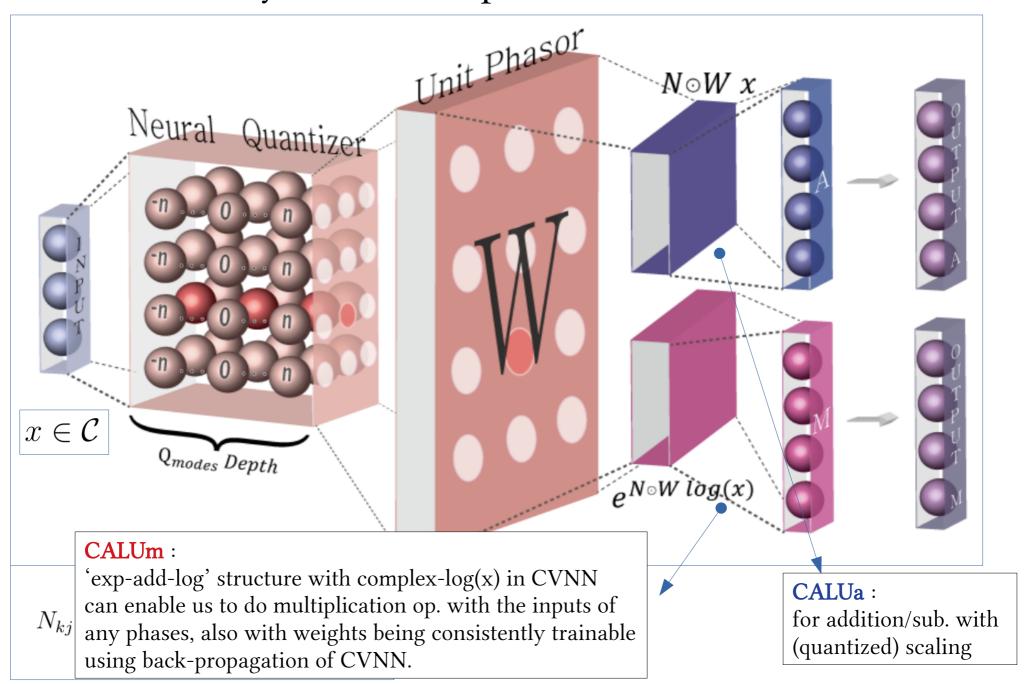
ex)
$$Q = \{-N_{max}, ..0, .., N_{max}\}$$

CALUm:

for multiplication/div. with (quantized) power op.

(quantized) scaling

One CALU layer in a Complex-Valued Neural Network



ex) $Q = \{-N_{max}, ..0, .., N_{max}\}$

Neural Quantizer, N

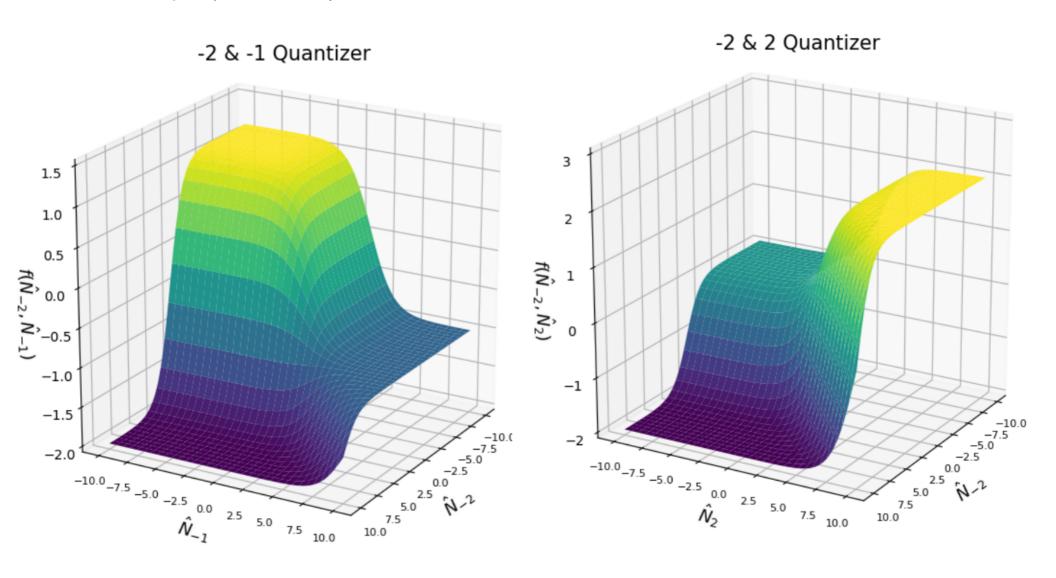
- Expectation value of picking a quantized value in a set Q, with each element n, weighted by the probability P(n) modeled by softmax function with learnable parameters, N-hats for each n.
- Q is a set of quantized values (in general C), which can encode any values from dynamics.
 - ex) Q = {-2,-1,0,1,2} with the unit phasor W = 1 \rightarrow R-valued total weights ex) Q = {0,1,2,...,N_{max}} with W = exp [i π σ] \rightarrow C-valued total weights
- k, j : node indexes connecting layers
- N_{ki} is asymptotically stabilized and trained to be a Qi, in back-propagation

$$\frac{\partial N_{kj}}{\partial \hat{N}_{kj,n}} = -P_{kj,n}(N_{kj} - n), \quad P_{kj,n} = \frac{\exp(\hat{N}_{kj,n})}{\Sigma_l \exp(\hat{N}_{kj,l})}$$

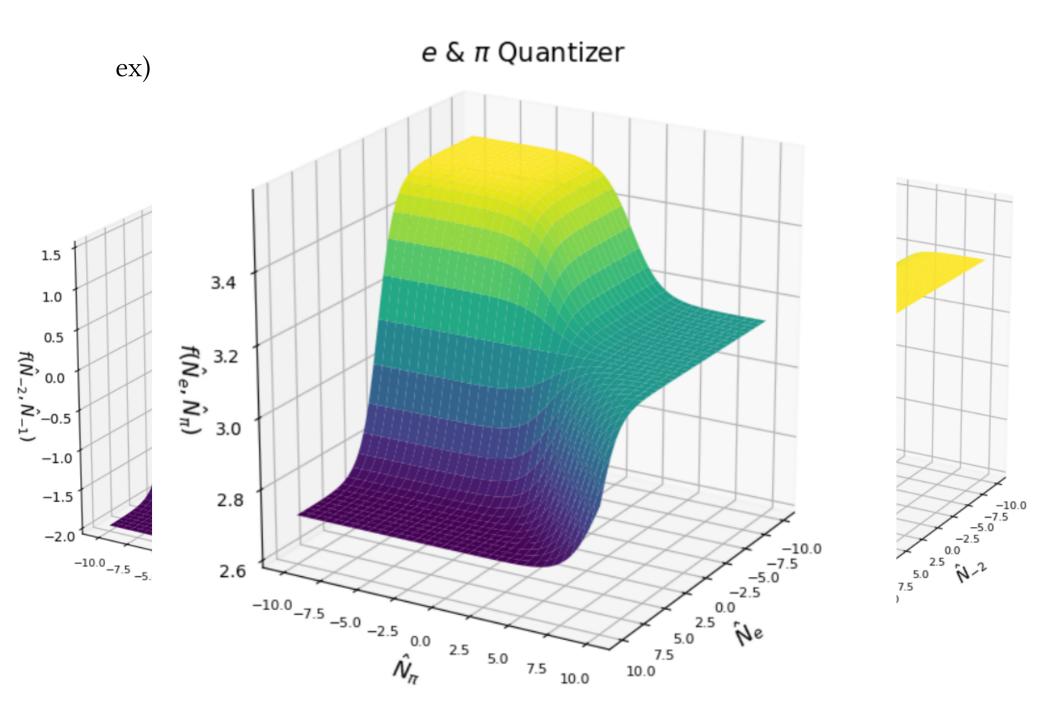
→ coupled Boltzmann transport equation.

Behavior of Neural Quantizer, N

ex)
$$Q = \{-2, -1, 0, 1, 2\}$$



Behavior of Neural Quantizer, N



Unit Phasor

$$W_{kj} = e^{+i\pi\sigma(\hat{\theta}_{kj})}$$

- can be trained into the quantized phases ({0,pi})
- so the overall sign of weights {+1, -1} can be trained in the complex-domain, with learnable parameters, theta-hats
- trainable, if Q consists of all positive numbers, otherwise just set to 1.

all in all ...

CALUa

• linear layer with scaling weights (N°W) quantized in Q for addition and subtraction.

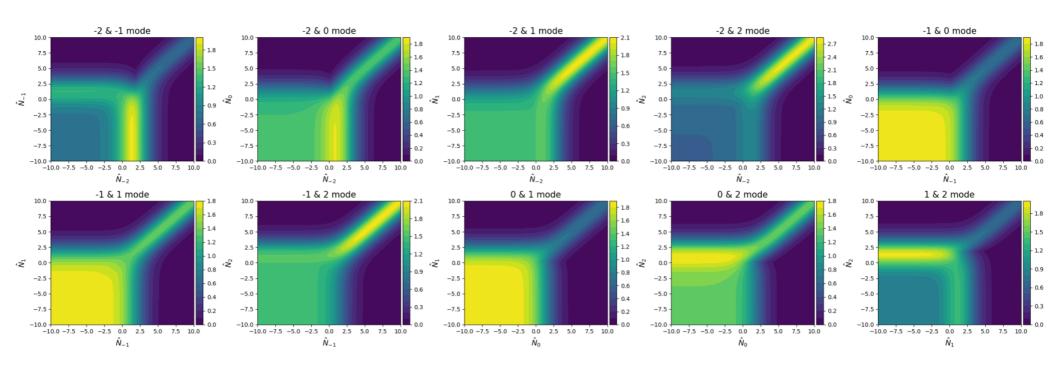
CALUm

- exp-add-log layer with powering weights (N∘W) quantized in Q for mul. and div.
- The first NN architecture which can learn the multiplication and division op. of input variables in general domain, trainable using BP, in precision with universality.

Regularization Potential

$$E_{kj} = \sum_{n \in Q} |N_{kj} - n| \log [(1 - P_{kj,n})]$$

- for boosting the training of neural quantizer
- $E_{kj} \rightarrow 0$ for N_{kj} =n , also in preference of adjacent modes for jumping into.



Experiments

Experiment 1. Regression to a constant (1)

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_8 \end{bmatrix} \to \mathbf{NN} \ \mathbf{model} \to \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

NN Model	Layer Structure
tanh	DIM(X) 100:TANH 100:TANH DIM(Y):IDENTITY
ReLU	DIM(X) 100:RELU 100:RELU DIM(Y):IDENTITY
NALU	$\text{dim}(\mathbf{x}) 50:\text{nalu}_m \text{dim}(\mathbf{y}):\text{nalu}_a$
CALU	$DIM(X) 50:CALU_m DIM(Y):CALU_a$

Experiment 1. Regression to a constant (1)

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_8 \end{bmatrix} \to \mathbf{NN} \ \mathbf{model} \to \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

	tanh	ReLU	NALU	CALU
Interp. Error	$< \mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-6})$	$<\mathcal{O}(10^{-25})$
Extrap. Error	$< \mathcal{O}(10^{+3})$	$< \mathcal{O}(10^{+3})$	$< \mathcal{O}(10^{-4})$	$<\mathcal{O}(10^{-21})$

Experiment 2. Regression as identity

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_8 \end{bmatrix} \to \mathbf{NN} \ \mathbf{model} \to \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_8 \end{bmatrix}$$

NN Model	Layer Structure
tanh	dim(x) 100:tanh $ 100$:tanh $ dim(y)$:identity
ReLU	DIM(X) 100:RELU 100:RELU DIM(Y):IDENTITY
NALU	$\text{dim}(\mathbf{x}) 50:\text{nalu}_m \text{dim}(\mathbf{y}):\text{nalu}_a$
CALU	$\text{DIM}(\mathbf{X}) 50:\text{CALU}_m \text{DIM}(\mathbf{Y}):\text{CALU}_a$

Experiment 2. Regression as identity

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_8 \end{bmatrix} \to \mathbf{NN} \ \mathbf{model} \to \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_8 \end{bmatrix}$$

	tanh	ReLU	NALU	CALU
Interp. Error	$< \mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-6})$	$<\mathcal{O}(10^{-25})$
Extrap. Error	$< \mathcal{O}(10^{+3})$	$< \mathcal{O}(10^{+3})$	$< \mathcal{O}(10^{-4})$	$<\mathcal{O}(10^{-21})$

Experiment 3. Elementary Arithmetic Operations

Addition
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \to \mathbf{NN} \ \mathbf{model} \to \begin{bmatrix} x_1 + x_2 \end{bmatrix}$$
Subtraction $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \to \mathbf{NN} \ \mathbf{model} \to \begin{bmatrix} x_1 - x_2 \end{bmatrix}$
Multiplication $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \to \mathbf{NN} \ \mathbf{model} \to \begin{bmatrix} x_1 * x_2 \end{bmatrix}$
Division $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \to \mathbf{NN} \ \mathbf{model} \to \begin{bmatrix} x_1 / x_2 \end{bmatrix}$

Experiment 3. Elementary Arithmetic Operations

NN Model	Layer Structure
tanh	dim(x) 100: $ tanh 100$: $ tanh dim(y)$: $ identity $
ReLU	DIM(X) 100:RELU 100:RELU DIM(Y):IDENTITY
NALU	dim(x) 5:nalu dim(y):nalu
CALU	DIM(X) 5:CALU DIM(Y):CALU

		tanh	ReLU	NALU	CALU
n E	$x_1 + x_2$	$<\mathcal{O}(10^{-6})$	$<\mathcal{O}(10^{-6})$	$<\mathcal{O}(10^{-6})$	$<\mathcal{O}(10^{-20})$
Interpolation	$x_1 - x_2$	$<\mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-6})$	$<\mathcal{O}(10^{-6})$	$<\mathcal{O}(10^{-20})$
erpol	$x_1 * x_2$	$<\mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-6})$	$<\mathcal{O}(10^{-2})$	$<\mathcal{O}(10^{-16})$
Inte	x_1/x_2	$<\mathcal{O}(10^{-6})$	$<\mathcal{O}(10^{-6})$	$<\mathcal{O}(10^{+1})$	$<\mathcal{O}(10^{-16})$
Extrapolation E	$x_1 + x_2$	$<\mathcal{O}(10^{+3})$	$<\mathcal{O}(10^{+3})$	$<\mathcal{O}(10^{-2})$	$<\mathcal{O}(10^{-17})$
latic	$x_1 - x_2$	$<\mathcal{O}(10^{+3})$	$< \mathcal{O}(10^{+3})$	$<\mathcal{O}(10^{-2})$	$<\mathcal{O}(10^{-17})$
rapo	$x_1 * x_2$	$<\mathcal{O}(10^{+3})$	$< \mathcal{O}(10^{+6})$	$<\mathcal{O}(10^{+6})$	$<\mathcal{O}(10^{-14})$
Ext	x_1/x_2	$<\mathcal{O}(10^{+3})$	$< \mathcal{O}(10^{+7})$	$<\mathcal{O}(10^{+3})$	$<\mathcal{O}(10^{-15})$

Experiment 4. Multinomial Expansion

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \to \mathbf{NN} \ \mathbf{model} \to \begin{bmatrix} (x_1 + x_2 + x_3) \\ (x_1 + x_2 + x_3)^2 \\ (x_1 + x_2 + x_3)^3 \end{bmatrix}$$

NN Model	Layer Structure		
tanh	DIM(X) 100:TANH 100:TANH DIM(Y):IDENTITY		
ReLU	DIM(X) 100:RELU 100:RELU DIM(Y):IDENTITY		
NALU	$\text{dim}(\mathbf{x}) 100:\text{nalu}_m \text{dim}(\mathbf{y}):\text{nalu}_a$		
CALU	$\text{dim}(\mathbf{x}) 100:\text{calu}_m \text{dim}(\mathbf{y}):\text{calu}_a$		

Experiment 4. Multinomial Expansion

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \to \mathbf{NN} \ \mathbf{model} \to \begin{bmatrix} 1 \\ (x_1 + x_2 + x_3) \\ (x_1 + x_2 + x_3)^2 \\ (x_1 + x_2 + x_3)^3 \end{bmatrix}$$

	tanh	ReLU	NALU	CALU
Interp. Error	$< \mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-2})$	$<\mathcal{O}(10^{-25})$
Extrap. Error	$< \mathcal{O}(10^{+3})$	$< \mathcal{O}(10^{+6})$	$< \mathcal{O}(10^{+6})$	$<\mathcal{O}(10^{-20})$

Experiment 5. Learning 3 Lorentz scalars in 2 four-vectors

$$\begin{bmatrix} p_0 \\ \vdots \\ p_3 \\ q_0 \\ \vdots \\ q_3 \end{bmatrix} \rightarrow \mathbf{NN} \ \mathbf{model} \rightarrow \begin{bmatrix} p \cdot p \\ p \cdot q \\ q \cdot q \end{bmatrix}$$

NN Model	Layer Structure		
tanh	DIM(X) 100:TANH 100:TANH DIM(Y):IDENTITY		
ReLU	DIM(X) 100:RELU 100:RELU DIM(Y):IDENTITY		
NALU	$\text{dim}(\mathbf{x}) 50:\text{nalu}_m \text{dim}(\mathbf{y}):\text{nalu}_a$		
CALU	$DIM(X) 50:CALU_m DIM(Y):CALU_a$		

Experiment 5. Learning 3 Lorentz scalars in 2 four-vectors

	tanh	ReLU	NALU	CALU
Interp. Error	$< \mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-6})$	$< \mathcal{O}(10^{-2})$	$<\mathcal{O}(10^{-20})$
Extrap. Error	$< \mathcal{O}(10^{+3})$	$< \mathcal{O}(10^{+6})$	$< \mathcal{O}(10^{+6})$	$<\mathcal{O}(10^{-16})$

New classification model with new feature extraction by CALUs

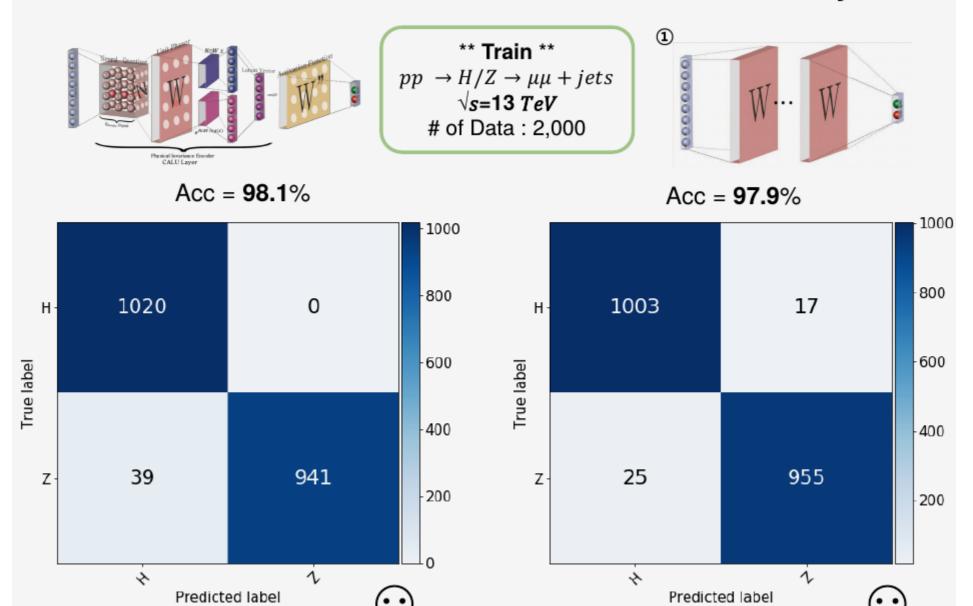
with Kayoung Ban (talk today), Sungyeop Lee, Chanju Park, and Seong Chan Park

- → Re-discoverying the Lorentz Invariance using CALU filters
 - → Trained discriminative model becomes universal, beyond the region of training sample

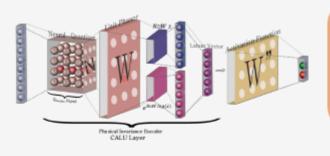
Experiments – 1. universality

Model Architecture	Data	Model structure	
	** Train ** $pp \rightarrow H/Z \rightarrow \mu\mu + jets$ $\sqrt{s} = 13 \ TeV$ # of Data : 10,000	8:identity 200:ReLU 200:ReLU 200:ReLU	
8 200 200 2	Input = $(E_{\mu 1}, \overrightarrow{P_{\mu 1}}, E_{\mu 2}, \overrightarrow{P_{\mu 2}})$	2:softmax	
Neural Quantizer Neural Quantizer Laber Vector Activation fulfaction	Output = (H, Z)	8:identity 100:CALUm 3:CALUa 50:ReLU	
Physical Invariance Encoder CALU Layer Classifier MLP Layer	** Test ** $pp \rightarrow H/Z \rightarrow \mu\mu + jets$ $\sqrt{s} = 100 TeV$		
8 100 3 50 2	# of Data : 2,000	2:softmax	

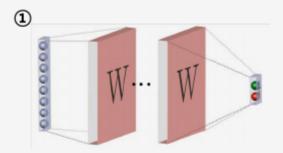
Results of Classification – 1. universality



Results of Classification – 1. universality

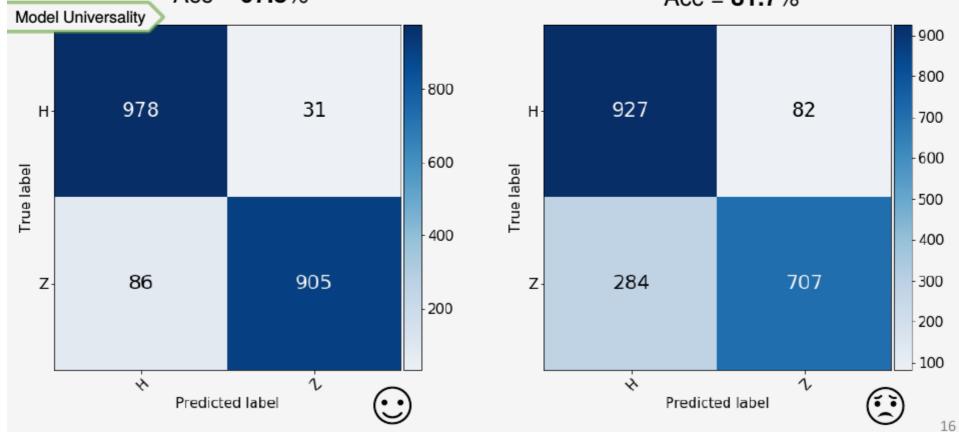


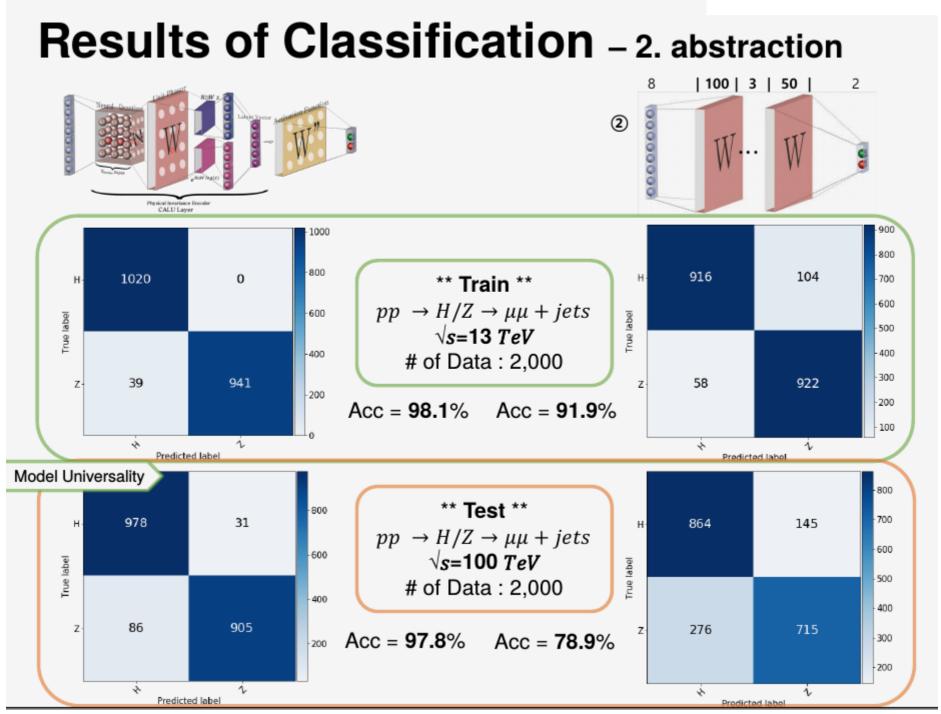
** **Test** ** $pp \rightarrow H/Z \rightarrow \mu\mu + jets$ \sqrt{s} =**100** TeV# of Data : 2,000



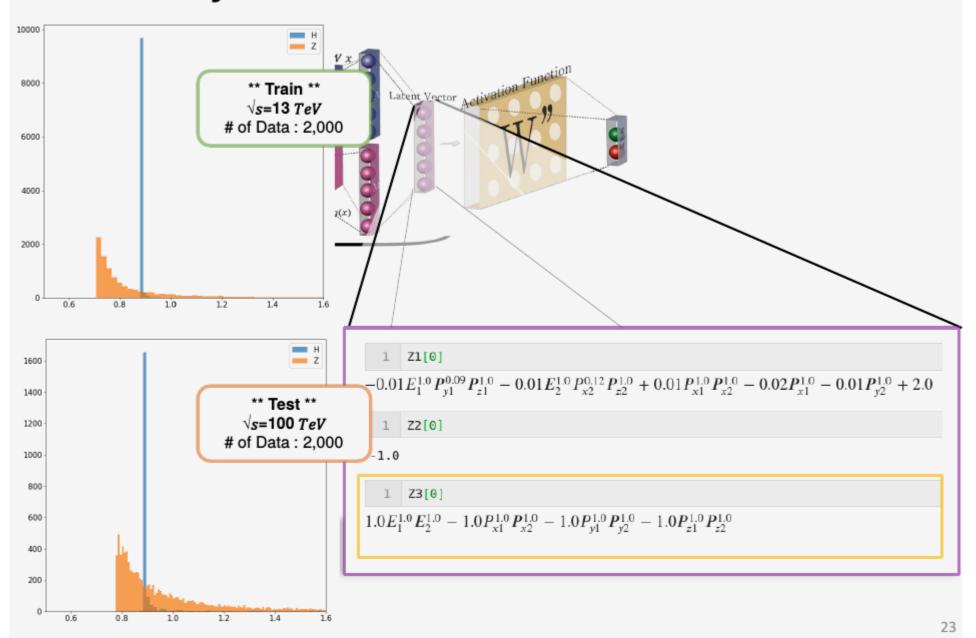
Acc = 97.8%

Acc = 81.7%





Discovery of the Lorentz invariance : CALU+DNN



Conclusion

- We designed a new NN architecture **CALU** with Neural Quantizer which can learn the elementary arithmetic operations in general complex-variable domain, trainable using back-propagation, in precision with universality.
- CALU nets have demonstrated its ability for extracting the exact physical invariance (Lorentz invariance) hidden in data, just under some classification pressure.
- As an individual neuron (ex. caluon) gets more clear its own interpretation, dynamics between them becomes more and more important :
 - → need for embedding symmetries and interactions among neurons
 - \rightarrow ex) Exclusive Quantization of caluon states
 - → CALU representation of field theory, in general complex-domain
- Data-driven modeling and Principle/symmetry-based modeling are converging gradually...

ADVERTISEMENT

XAIENCE 2019

= eXplainable/crossing-over + AI + sciENCE

- Workshop on AI applications for science, and vice-versa
- https://www.xaience.cc
- 2019 11.07 (Thu) 08 (Fri), @ SNU
- We welcome your participation!

감사합니다