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a word of wisdom for young people

+ | was a grad student at Kyoto from 1976 to 1980, being fascinated
by general relativity (GR) and cosmology...

a sense of dawn in obs cosmology <= > golden age of particle physics
1971-77 Confirmation of CMB dipole 1974 discovery of J/y

1982 CfA Redshift Survey (2400 gal’s) 1983 discovery of W/Z

dark age of GR/no hints of GWs. But lots of exciting theories...

1974 Hawking radiation

1978 GUT baryogenesis seemed a dream to test these, though...
1980 Inflation, ...
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1. Introduction

e Horizon problem

ds® = —dt* + a*(t)dz” + Finstein eqs.

i e
= ¢ —WT (p+3p) |lp+3p>0 < decelerated expansion
a
Ifaxt' thennin—1)<0 = 0<n<]1
dt
ds* = a*(n) (—d?72 + de) , dn=—.
a
(n: conformal time - - - maintains causality)
n
- W now
- dn = *dx : light ray
dt
n=[— — 0 fort — 0
a

last scattering
surface

X



e Solution to the horizon problem n

Existence of a stage a o< t" |[n > 1

in the early universe

last scattering
surface

& p+3p <O

t
dt

= /—:/dn:oo!!
0o a

N — —o0
e Entropy problem (= flatness problem)
Entropy within the curvature radius: N, ~ conserved

3 3
a Ty —3/2 (TO) 87
N, =n 1 — 25 (Z2) ~10
: ( Tm) (H) -l > (2

Ty ~107%V  Hy ~ 107 3eV

Where does this big number come from?
“Huge entropy production in the early universe”



§2. Single-field slow-roll inflation

Universe dominated by a scalar field:
p=12+V(e) |
| = p+3p=2¢"—V(9))
p=30" V(o)

if ¢ <V(ip) = %: 1

3p) >0 M>r=——

6M3

accelerated expansion

* Chaotic inflation (or Creation of Universe from nothing)
(Linde, Vilenkin, Hartle-Hawking, - - -)

V()

/. Pinitial S Mp =~ (10" Ge\/)4

-+ - quantum gravitational

s if V"(¢) < M3, then ¢ >> Mp




e Equations of motion:

o+ 3Hé +V'(¢)=0 (H < Mp initially in chaotic inflation)

friction
o on Y Gowrll ) o s=-2 RS
~ ———| (slowro = — = —¢c+—
3H Ho
(. 1 P> é
H = =
)T T P =5 He
1 1.
H* = ~¢*+V
7'~ 37 (3 +v19)
1% H 3¢
= |H*= 3]\(223 (potential dominated (2)) < €= — & 2qu¢) <1
The slow-roll condition (1) is satisfied, provided that
M3V MRV
ne =2y +dey, Ny = v v <1, e = . <

- Slow-roll inflation assumes that the above two are fulfilled.
(Note that these are not necessary but sufficient conditions.)

- There are models that violate either or both of the above two conditions.
(Need special care in the calculation of perturbations)



e c-folding number of inflation @ oc e

Y D : SO T L (N e N A
o= [[aa= | o= o= = (i)

T i

1
slow roll V = §m2gb2

V)]

H

7 -

For V(¢) ~ (10¥°GeV)?*, N(¢) = 60 solves horizon & flatness problems

1
N(¢p) =260 at ¢ = 15Mp for V:§m2¢2

Slow roll ends at ¢ = ¢ ~ vV2Mp = Rcheating (entropy generation)



§3. Generation of cosmological perturbations
1
Action: /d4sc V- ( PR — 59W¢ WPy — V(gb)) . M:=(87G)!
Cosmological perturbations are generated from quantum
(vacuum) fluctuations of the inflaton ¢ and the metric g,,.

e Scalar-type (density) perturbations
+ guv and ¢
ds? = o [—(1 +24)dn? — 20, B dnda’ + ((1 +2R)5:; + 2a¢ajHT) da;ida;j] |
b(t x') = $(t) + x(t,2')
A : Lapse function (~ time coordinate) perturbation (= A;Y%)

B : Shift vector (~ space coordinate) perturbation (= k1 B,Y})

Scalar perturbation has 2 degrees of coordinate gauge freedom.

G 40
R : Spatial curvature (potential) perturbation (= RyY%) OR=—5A
a
Hy : Shear of the metric (= k™*HyY})

No dynamical degree of freedom in the metric itself.



* Action expanded to 2nd order
3 1 3., 2] 2 / 2 (3) (3)
Sp = [ dnd'sL, =5 [ dyda [MP{—G(R—HA) —2RAR—4AAR}

(3)
+ (X' — AP + x(A —a”0;V)x — 6¢'(R' — HA)x — 2A(H' — ¢")x
9 ﬁ)(ﬂgp _ B){gb’x +OMA(R — HA)}] ,

Canonical momenta

oL

PX = aXf — a2<xl . A(rb/)
_ 853 2 2 / / 2 (3) /
Pr = o =a® | ~6MA(R' — HA) = 3¢y — 2Mp A(H} — B)
0L, (3)
Pr=_—"=—a"Al¢'x + 2Mp(R — HA)]
OH,

Solving the above for R’, H7. and x’, the Hamiltonian is obtained from
Hs,tot — PRR/ + PTH% + PXX/ — £5

A and B remain as Lagrange multipliers.
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Action in the Hamiltonian form Garriga, Montes, MS & Tanaka (1998)

SQ:/dnd%CS:/dnd% (ZPGQ;—HS—ACA—BCB>

1
He= =P —4nG¢'Prx+ -+, (Hsor = Hs + AC4 + BCp)

202 X

(3)
Cy=¢ P+ HPr+ OM2a* AR+ a*(H¢' — ¢”)x  (Hamiltonian constraint)
Cp = Pr (Momentum constraint) ,
Qa:{RvHT7X}7 Pa:{PR7PT7PX}'

- Gauge transformation [£" = (T, 9;L) ] is generated by C4 and Cp:

6,Q = {Q, / (TCy + LCp) d%}

P.B.
Up to total derivatives, Ly is gauge-invariant:

d,Lo = 0+ (total derivatives)

In particular, C'y and C'p are gauge-invariant by themselves.
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e Reduction to unconstrained variables a @ Faddeev-Jackiw (1988)
1. Solve Cy = ¢' P, + - -- = 0 for P, and insert it into Sy. Also insert C'p = Py, = 0.
2. The resulting Ss is a functional of { Pr, R, x}: S5 =55 [Pr, R, x]

3. Since C'y = Cp = 0 are gauge-invariant, S5 is still gauge-invariant. Hence it must be
expressed solely in terms of gauge-invariant variables. Indeed, one finds

2
9 o 3)
PC) —a MPRC A RC

2M3a? () H
* 3 / P
SQ/dndCU[PCRC— ¢,2 ( RC—FW
2M%a? (3) H
PCEPR+ qj AX, RCER—ax

This is in fact the same as choosing y = 0 gauge (called ‘comoving’ slicing).
i.e., R, is the curvature perturbation on the comoving hypersurface.

n
" energy flow line
\
-0 /
T “\ A =0
-
\ J
C—
-
\
-
——— \
\§—/
» X
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* 55 in the 2nd order form:

%(b/, Eg,:aH
a

x can be generalized to the case of a non-trivial sound velocity ¢ # 1:

2
Sy = / dnd?’x% (R = (VR.)?); =z=

2 1/2
S5 = /dn d?’x% (R? = cA(VR.)?): = alp +Hp> . (Garriga & Mukhanov ‘99)
CS

(3)
Equation of motion (for Fourier modes: A — —k?)

(1 +w)'/?

Cs

/
2 ,
R +2°R.+k*R.=0: zoxa o a for slow-roll inflation .
2

For ¢k < H (& csk/a < H),

R o 2z~1 ~ decaying mode
¢ 0 ~ growing mode

- “growing” mode of R, stays constant on super-(sound) horizon scales.

- The existence of a constant mode is a general property of any cosmological model.

But this does not mean that adiabatic R. is constant on super-horizon scales.
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e Inflaton perturbation on flat slicing (assume c¢s = 1 again)

Alternatively, in terms of xy on R = 0 hypersurface (flat slicing),

¢’ ¢’
=y——-R=—FR.
XF =X 1 A
2
* * a /
S5 = S5[xr] = /dn d’x B (XF2 — (Vxr)? — azmsz X%) )

2 (4 "'
, _ At/ L, 2 d(V
Mell T T A (GTH) %V + M2dt \ H

Y r ~ minimally coupled almost massless scalar in de Sitter space

8§V < H?, (2/M3)(V/H) ~ 6H < H? for slow-roll inflation.
(N.B. the sufficient conditions for slow roll: Q%V < 3H? & H < H?)

- de Sitter approximation for the background:
1
= 1

This is a good approximation for k > H (sub-horizon scale) modes

H = const., a(n) (—o0 < <0)



13

e Canonical quantization

—

7T(?7,CL') _ 5S§[XF]

= 2 ), m(n, 2] =ihé(¥ — 2
L g, ), w0, = it

X k(. ik-& o .
= XF = / (2ﬂ)3/2 (%Xk(ﬁ)e kZ h.c.> ; [CLE7 a%/] = ho(k — k')

- - 1
Xi o 2ZHXG A+ (R4 i) X =07 XX — Xp X =
.. . k2 2 e . _
S Xet3Hxe A S mey )Xk =00 XpXp — Xp X = 3
slow roll = mz < H? ~ massless

de Sitter approximation:
( 1

y e—ik'r]
= Xk N (0 —kn)e ™
(2k)3/2 H —iay,
> e
[ k/H—0 \/2k3

H 2
2 — 2
on flat slice <XF>I<: = (27T>3‘X/€‘ — (%) for k 5 H <h = 1)

(66°)




- de Sitter approximation breaks down at k£ << H.
i.e., the time-variation of y; on super-horizon scales cannot be neglected.

- However, the corresponding mode of R, becomes constant on super-horizon scales.

2
S Rasli) = Reslon) = — 2 xale) ~ %(;’“()tk)

—iak

log L

4

k = const.
(L =alk)

> log a

t=t. < mn=mn. < k=H(m) ---horizon crossing time
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Although not quite intuitive, one can quantize R. from the beginning:
2 /
2z a a
SSI/dnd?’CC?(R'CZ—(VRC)Q); z = ¢ H=—=aH

. 055 . N psim
Pc(nv QZ’) - ma [Rc(n7 33), Pc(n7 x )] — ZFL(S(Z’ - )

&Pk, 2z o I,
= R, /27T 3/2 apri(n) € ikz h.c.); ar, a%}ziﬁ(k—k/)

’rk—i—Q Tk+]€27“k—0; A
z

2
> H ! e~k
k/H—o00 a¢\/2]§
= TR RS ,
H 1 i
— —e "k —km. =~ 1k ~H
WH0 G - 53 Mk ( )
Ark? H2\’
(RY), = . S\Tk\2—> (—) for —kn—0
<27T> 27T¢ k=H




e Curvature perturbation spectrum (say, at n = nf)

o Amk? Ak , [ H? ’
(RY), = anc(ka n) = 2n) Rex(n)|” = (%)

Since dN = —H dt,

=1y

ON H ON H\° ON _\°
- R = [ === =(—29 flat sli
i =75 = = (G ) b (5550) | o
That is, for single-field slow-roll inflation,
N H
Re=0N|i—, = %—¢5¢ - (00 = %) on flat slice

Only the knowledge of the homogeneous background is sufficient
to predict the perturbation spectrum: o/V-formula

If (R2)g o< k"1
ns = 1 : scale-invariant (Harrison-Zeldovich) spectrum

ne =1 —¢€ (e < 1) for chaotic inflation (V(¢) o< ¢P).

16



17

e Large angle CMB anisotropy

(%) ) = 6+ 0) s Zae)) + [ 0,000,200

T
(Sachs-Wolfe) (Ingggrated Sachs-Wolfe)
XM ded
(; : curvature perturbation on
> 4 Pphoton = const. surfaces

0 O=v-—-97
\ / U = Newton potential
® = curvature pert. on Newton slice

Last Scattering Surface

v

For a dust-dominated universe at decoupling,

1 2 1 2
SW: G +0 = —Rew — =Sar = zVs — =S, noISW: 9,0 =0
5 5 3 5
R+ : primordial adiabatic curvature perturbation; &, = -V, = 5726*
. 510d 35101"

Su = 202
Pd 410r

~ entropy perturbation
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e Observational implications of Large-angle CMB anisotropy
COBE-DMR (‘96); WMAP 9yr (‘12); Planck (‘18)

OT\* 5T 1
< (7) > ~ 1071 at 6 ~ 10 L §\If + --+ for adiabatic perturbation

Y
ko 1
W) ~ 10710 ar 2= Hy~ Hy'' ~ 3000 Mpc ~ 10%cn
< >k . ao ! present horizon scale ( v . cm)
1
ForV:§m2gb2,
3\ 2 3\% / H2\? m?
= 0 () (5], s
< >k0 5 < >k0 5 27 o_py 25M1% ( ) %:H

a

m ~ 107GeV
=
V ~ (101°GeV)*
e power-law index: nppanac = 0.9649 £ 0.0042

Blue or scale invariant spectrum (ng > 1) is excluded at high CL!
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e Tensor-type perturbations

ds® = —dt*+ a*(t) (6;; + hij) da'da’

hi; --- Transverse-Traceless
2 M2 4 2 1 9
a
1 L, 1 Mo

@;j ~ massless scalar (2 degrees of freedom)

= 2x (2)

Ak 4 H\> 2 H?
= Prik) = (h3), =2x — x | — | == —
(27)3 r(k) = sz> . Mz 8 (27?) w2 M3,

contribute to CMB anisotropy

T tensor <h22]> Pr(k)
S scalar  (R?) ~ Ps(k)

¢2

" %

slowroll = r<l.

ko=aH

1
r~0.13 m»v—§2& S rppna < 0.1 (95% CL)



e Spectral index

« scalar-type (curvature) perturbation

_ dIn[Pr (k)k?]
e dink
da dH da d
k=a(ty) H — dhnk=—+4—~—=—
altr) ! a i H a  Hdt _—
For slow-roll inflation,
ng—1 = — L I[Pk = — L (m H —In g'b?)
Hdt " Hdt
V"'V — 3V"?
~ = 277\/ - 6€V .

STGV?2
* observed power-law index: npjnqac = 0.9649 &+ 0.0042

x tensor-type perturbation

dIn[Pr(k)k%]  d . d , _H 81G?
p— —_— 1 e — —_— - = —
nr dln k Fag MPr(R)ET] = o I HE =20 2

12
1 Pr(k r
~ —3¢— = r(k) = —— <« consistency relation !

V. 8Psk) 8

20
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e Model dependence

x power-law inflation

V() x exp[A¢p/my] <« dilaton in string theories 7

N 167
aoxt (Q:V)
T
= <1, — >0.1
ngs g ~

« hybrid inflation < supergravity-motivated 7
1
ca. V(o) = g5 (M= MP) 4 6 4 g6

8t
aocell  H*=x 7TTVO when ¢ =0,¢ > M/g.

= ng>1, S can be large or small.

x quartic hilltop inflation

A
V@) =Vo—J6' 4 = mgm



e Observational Constraints from Planck 2018: arXiv:1807.06211

0.20

TT, TE,EE+lowE+lensing

TT, TE,EE+lowE+lensing
+BK14

TT, TE,EE+lowE+lensing
+BK14+BAO

Natural inflation

0.15
T
-
L

&
<
-

Hilltop quartic model
4 « attractors

\ Power-law inflation
R? inflation

V x ¢?

V o ¢4/3

Vo

V x ¢2/3

Low scale SB SUSY
N,=50

N.=60

Tensor-to-scalar ratio (r.002)
0.10
]
-~
1

0.05
-
//
o | [ []1]]

0.00
\

0.94 0.96 0.98 1.00
Primordial tilt (n.)

x ¢* model excluded at high CL, » < 0.1, n, < 1 at extremely high CL.
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§4. Summary of single-field slow-roll inflation

e The growing mode of the curvature perturbation on comoving slices R.. stays constant
super-horizon scales.

- R. ~ AN in the slow-roll case.
- R. may vary in time if the slow-roll condition is violated.

- Slow-roll models predict almost scale-invariant spectrum, but other spectral shapes
are possible.

e Tensor perturbations may or may not be negligible.

On-going and future observations

— LSST, Euclid, --- ~ 5 x 107 galaxies, up to z < 2
— LiteBIRD, Simons Observatory, - - - high resolution CMB polarization map
Y
Inflaton potential may be determined
Y

Understanding of physics of the early universe (/ extreme high energy physics)



