

SI 2019 21 August, 2019

Inflation & Cosmology II

- single-field slow-roll inflation-

Misao Sasaki

Kavli IPMU, University of Tokyo YITP, Kyoto University LeCosPA, National Taiwan University

a word of wisdom for young people

- * I was a grad student at Kyoto from 1976 to 1980, being fascinated by general relativity (GR) and cosmology...
 - a sense of dawn in obs cosmology 1971-77 Confirmation of CMB dipole 1974 discovery of J/ψ 1982 CfA Redshift Survey (2400 gal's) 1983 discovery of W/Z

dark age of GR/no hints of GWs. But lots of exciting theories...

1974 Hawking radiation 1978 GUT baryogenesis 1980 Inflation, ...

seemed a dream to test these, though...

a word of wisdom for young people

- * I was a grad student at Kyoto from 1976 to 1980, being fascinated by general relativity (GR) and cosmology...
 - a sense of dawn in obs cosmology 1971-77 Confirmation of CMB dipole ... 1982 CfA Redshift Survey (2400 gal's) golden age of particle physics 1974 discovery of J/ψ ... 1983 discovery of W/Z
 - dark age of GR/no hints of GWs. But lots of exciting theories...

1974 Hawking radiation 1978 GUT baryogenesis seemed a dream to test these, though... 1980 Inflation, ...

 * One day, Humitaka Sato (our boss) told us:
 "one can't live on fairy tales, but fairy tales are necessary for healthy growth of children"

a word of wisdom for young people

- * I was a grad student at Kyoto from 1976 to 1980, being fascinated by general relativity (GR) and cosmology...
 - a sense of dawn in obs cosmology 1971-77 Confirmation of CMB dipole ... 1982 CfA Redshift Survey (2400 gal's) golden age of particle physics 1974 discovery of J/ψ ... 1983 discovery of W/Z

dark age of GR/no hints of GWs. But lots of exciting theories...

1974 Hawking radiation 1978 GUT baryogenesis seemed a dream to test these, though... 1980 Inflation, ...

 * One day, Humitaka Sato (our boss) told us:
 "one can't live on fairy tales, but fairy tales are necessary for healthy growth of children"

So find out your own fairy tales! But don't forget your real life!

§1. Introduction

• Horizon problem

 $ds^{2} = -dt^{2} + a^{2}(t)d\vec{x}^{2} + \text{Einstein eqs.}$ $\Rightarrow \quad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(\rho + 3p\right) \quad \boxed{\rho + 3p > 0 \quad \Leftrightarrow \quad \text{decelerated expansion}}$

If $a \propto t^n$, then $n(n-1) < 0 \implies 0 < n < 1$

$$ds^2 = a^2(\eta) \left(-d\eta^2 + d\vec{x}^2 \right), \quad d\eta = \frac{dt}{a}$$

(η : conformal time · · · maintains causality)

• Solution to the horizon problem

Existence of a stage $a \propto t^n$ n > 1in the early universe

$$\Rightarrow \quad \rho + 3p < 0$$
$$\Rightarrow \quad \int_0^t \frac{dt}{a} = \int d\eta = \infty !!$$

• Entropy problem (= flatness problem) Entropy within the curvature radius: $N_{\gamma} \sim$ conserved

$$N_{\gamma} = n_{\gamma} \left(\frac{a}{\sqrt{|K|}}\right)^{3} \sim \left(\frac{T_{0}}{H_{0}}\right)^{3} |1 - \Omega_{0}|^{-3/2} > \left(\frac{T_{0}}{H_{0}}\right)^{3} \sim 10^{87}$$
$$T_{0} \sim 10^{-4} \text{eV} \quad H_{0} \sim 10^{-33} \text{eV}$$

Where does this big number come from? "Huge entropy production in the early universe"

§2. Single-field slow-roll inflation

Universe dominated by a scalar field:

$$\begin{cases} \rho = \frac{1}{2}\dot{\phi}^2 + V(\phi) \\ p = \frac{1}{2}\dot{\phi}^2 - V(\phi) \end{cases} \Rightarrow \quad \rho + 3p = 2(\dot{\phi}^2 - V(\phi)) \\ p = \frac{1}{2}\dot{\phi}^2 - V(\phi) \qquad \Rightarrow \qquad \frac{\ddot{a}}{a} = -\frac{1}{6M_P^2}(\rho + 3p) > 0 \,; \quad M_P^2 = \frac{1}{8\pi G} \\ \hline \text{accelerated expansion} \end{cases}$$

* Chaotic inflation (or Creation of Universe from nothing)

(Linde, Vilenkin, Hartle-Hawking, \cdots)

$$\rho_{\text{initial}} \lesssim M_P^4 \approx \left(10^{19} \,\text{GeV}\right)^4$$
... quantum gravitational

if $V''(\phi) \ll M_P^2$, then $\phi \gg M_P$

• Equations of motion:

 $\ddot{\phi} + \underline{3H\dot{\phi}} + V'(\phi) = 0$ ($H \lesssim M_P$ initially in chaotic inflation) friction

$$\Rightarrow \qquad \boxed{\dot{\phi} \approx -\frac{V'}{3H}} \quad (\text{slow roll } (1)) \quad \Leftrightarrow \quad \delta \equiv \frac{\ddot{\phi}}{H\dot{\phi}} = -\epsilon + \frac{\eta}{2}; \ |\delta| \ll 1$$

$$\begin{cases} \dot{H} = -\frac{1}{2M_P^2}(\rho + p) = -\frac{\dot{\phi}^2}{2M_P^2} \qquad \eta \equiv \frac{\dot{\epsilon}}{H\epsilon} \\ H^2 = \frac{1}{3M_P^2}\left(\frac{1}{2}\dot{\phi}^2 + V(\phi)\right) \end{cases} \qquad \eta \equiv \frac{\dot{\epsilon}}{H\epsilon}$$

$$\Rightarrow \qquad H^2 \approx \frac{V(\phi)}{3M_P^2} \qquad (\text{potential dominated } (2)) \quad \Leftrightarrow \quad \epsilon \equiv -\frac{\dot{H}}{H^2} \approx \frac{3\dot{\phi}^2}{2V(\phi)} \ll 1$$

The slow-roll condition (1) is satisfied, provided that

$$\eta \approx -2\eta_V + 4\epsilon_V, \ \eta_V \equiv \frac{M_P^2 V''}{V}; \ |\eta_V| \ll 1, \ \epsilon_V \equiv \frac{M_P^2 V'^2}{2V^2} \ll 1$$

• Slow-roll inflation assumes that the above two are fulfilled. (Note that these are not necessary but sufficient conditions.)

 \cdot There are models that violate either or both of the above two conditions. (Need special care in the calculation of perturbations) • *e*-folding number of inflation $a \propto e^{-N}$

For $V(\phi) \sim (10^{15} \text{GeV})^4$, $N(\phi) \gtrsim 60$ solves horizon & flatness problems

$$N(\phi) \gtrsim 60$$
 at $\phi \gtrsim 15M_P$ for $V = \frac{1}{2}m^2\phi^2$
Slow roll ends at $\phi = \phi_f \sim \sqrt{2}M_P \implies$ Reheating (entropy generation)

§3. Generation of cosmological perturbations

Action:
$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} g^{\mu\nu} \phi_{,\mu} \phi_{,\nu} - V(\phi) \right); \quad M_P^2 = (8\pi G)^{-1}$$

Cosmological perturbations are generated from quantum (vacuum) fluctuations of the inflaton ϕ and the metric $g_{\mu\nu}$.

• Scalar-type (density) perturbations

 $\cdot g_{\mu\nu}$ and ϕ :

$$ds^{2} = a^{2} \Big[-(1+2\mathbf{A})d\eta^{2} - 2\partial_{j}\mathbf{B} d\eta dx^{j} + \Big((1+2\mathbf{R})\delta_{ij} + 2\partial_{i}\partial_{j}\mathbf{H}_{T} \Big) dx^{i} dx^{j} \Big],$$

$$\phi(t,x^{i}) = \phi(t) + \chi(t,x^{i})$$

- A : Lapse function (~ time coordinate) perturbation (= $A_k Y_k$)
- B: Shift vector (~ space coordinate) perturbation (= $k^{-1}B_kY_k$)

Scalar perturbation has 2 degrees of coordinate gauge freedom.

- \mathcal{R} : Spatial curvature (potential) perturbation (= $\mathcal{R}_k Y_k$) $\left[\delta R^{(3)} = -\frac{4}{a^2} \Delta^{(3)} \mathcal{R} \right]$
- H_T : Shear of the metric $(=k^{-2}H_{T,k}Y_k)$

No dynamical degree of freedom in the metric itself.

 \star Action expanded to 2nd order

$$S_{2} = \int d\eta d^{3}x \mathcal{L}_{s} = \frac{1}{2} \int d\eta d^{3}x a^{2} \Big[M_{P}^{2} \Big\{ -6(\mathcal{R}' - \mathcal{H}A)^{2} - 2\mathcal{R} \stackrel{(3)}{\Delta} \mathcal{R} - 4A \stackrel{(3)}{\Delta} \mathcal{R} \Big\} \\ + (\chi' - A\phi')^{2} + \chi \stackrel{(3)}{(\Delta} - a^{2}\partial_{\phi}^{2}V)\chi - 6\phi'(\mathcal{R}' - \mathcal{H}A)\chi - 2A(\mathcal{H}\phi' - \phi'')\chi \\ - 2 \stackrel{(3)}{\Delta} (H_{T}' - B) \Big\{ \phi'\chi + 2M_{P}^{2}(\mathcal{R}' - \mathcal{H}A) \Big\} \Big],$$

Canonical momenta

$$P_{\chi} \equiv \frac{\partial \mathcal{L}_s}{\partial \chi'} = a^2 (\chi' - A\phi')$$

$$P_{\mathcal{R}} \equiv \frac{\partial \mathcal{L}_s}{\partial \mathcal{R}'} = a^2 \left(-6M_P^2 (\mathcal{R}' - \mathcal{H}A) - 3\phi' \chi - 2M_P^2 \overset{(3)}{\Delta} (H'_T - B) \right)$$

$$P_T \equiv \frac{\partial \mathcal{L}_s}{\partial H'_T} = -a^2 \overset{(3)}{\Delta} [\phi' \chi + 2M_P^2 (\mathcal{R}' - \mathcal{H}A)]$$

Solving the above for \mathcal{R}' , H'_T and χ' , the Hamiltonian is obtained from

$$\mathcal{H}_{s,\text{tot}} = P_{\mathcal{R}}\mathcal{R}' + P_T H_T' + P_\chi \chi' - \mathcal{L}_s$$

 ${\cal A}$ and ${\cal B}$ remain as Lagrange multipliers.

Action in the Hamiltonian form

Garriga, Montes, MS & Tanaka (1998)

$$S_2 = \int d\eta \, d^3x \mathcal{L}_s = \int d\eta \, d^3x \left(\sum_a P_a \, Q'_a - \mathcal{H}_s - A \, C_A - B \, C_B \right)$$

$$\begin{aligned} \mathcal{H}_{s} &= \frac{1}{2a^{2}} P_{\chi}^{2} - 4\pi G \phi' P_{\mathcal{R}} \chi + \cdots, \quad (\mathcal{H}_{s,\text{tot}} = \mathcal{H}_{s} + AC_{A} + BC_{B}) \\ C_{A} &= \phi' P_{\chi} + \mathcal{H} P_{\mathcal{R}} + 2M_{P}^{2} a^{2} \overset{(3)}{\Delta} \mathcal{R} + a^{2} (\mathcal{H} \phi' - \phi'') \chi \quad (\text{Hamiltonian constraint}), \\ C_{B} &= P_{T} \quad (\text{Momentum constraint}), \\ Q_{a} &= \{\mathcal{R}, H_{T}, \chi\}, \quad P_{a} = \{P_{\mathcal{R}}, P_{T}, P_{\chi}\}. \end{aligned}$$

· Gauge transformation $[\xi^{\mu} = (T, \partial_i L)]$ is generated by C_A and C_B :

$$\delta_g Q = \left\{ Q, \int \left(\mathbf{T} C_A + \mathbf{L} C_B \right) d^3 x \right\}_{P.B.}$$

Up to total derivatives, \mathcal{L}_2 is gauge-invariant:

$$\delta_g \mathcal{L}_2 = 0 + (\text{total derivatives})$$

In particular, C_A and C_B are gauge-invariant by themselves.

- Reduction to unconstrained variables $a \ l\acute{a}$ Faddeev-Jackiw (1988)
- 1. Solve $C_A = \phi' P_{\chi} + \cdots = 0$ for P_{χ} and insert it into S_2 . Also insert $C_B = P_{H_T} = 0$.
- 2. The resulting S_2 is a functional of $\{P_{\mathcal{R}}, \mathcal{R}, \chi\}$: $S_2^* = S_2^* [P_{\mathcal{R}}, \mathcal{R}, \chi]$
- 3. Since $C_A = C_B = 0$ are gauge-invariant, S_2^* is still gauge-invariant. Hence it must be expressed solely in terms of gauge-invariant variables. Indeed, one finds

$$S_{2}^{*} = \int d\eta \, d^{3}x \left[P_{c}\mathcal{R}_{c}^{\prime} - \frac{2M_{P}^{4}a^{2}}{\phi^{\prime 2}} \left(\stackrel{(3)}{\Delta}\mathcal{R}_{c} + \frac{\mathcal{H}}{2M_{P}^{2}a^{2}}P_{c} \right)^{2} - a^{2}M_{P}^{2}\mathcal{R}_{c} \stackrel{(3)}{\Delta}\mathcal{R}_{c} \right]$$
$$P_{c} \equiv P_{\mathcal{R}} + \frac{2M_{P}^{2}a^{2}}{\phi^{\prime}} \stackrel{(3)}{\Delta}\chi, \quad \mathcal{R}_{c} \equiv \mathcal{R} - \frac{\mathcal{H}}{\phi^{\prime}}\chi$$

This is in fact the same as choosing $\chi = 0$ gauge (called 'comoving' slicing). i.e., \mathcal{R}_c is the curvature perturbation on the comoving hypersurface.

 $\star~S_2^*$ in the 2nd order form:

$$S_2^* = \int d\eta \, d^3x \, \frac{z^2}{2} \left(\mathcal{R}_c'^2 - (\nabla \mathcal{R}_c)^2 \right); \quad z \equiv \frac{a\phi'}{\mathcal{H}}, \quad \mathcal{H} \equiv \frac{a'}{a} = a \, H$$

* can be generalized to the case of a non-trivial sound velocity $c_s^2 \neq 1$:

$$S_2^* = \int d\eta \, d^3x \, \frac{z^2}{2} \left(\mathcal{R}_c'^2 - c_s^2 (\nabla \mathcal{R}_c)^2 \right); \quad z \equiv \frac{a(\rho + p)^{1/2}}{c_s H}. \quad \text{(Garriga \& Mukhanov '99)}$$

Equation of motion (for Fourier modes: $\stackrel{(3)}{\Delta} \rightarrow -k^2$)

$$\mathcal{R}_c'' + 2\frac{z'}{z}\mathcal{R}_c' + c_s^2k^2\mathcal{R}_c = 0; \quad z \propto a\frac{(1+w)^{1/2}}{c_s} \propto a \text{ for slow-roll inflation}.$$

For $c_s k < \mathcal{H} \iff c_s k/a < H$,

$$\mathcal{R}'_c \propto \begin{cases} z^{-1} \sim \text{decaying mode} \\ 0 \sim \text{growing mode} \end{cases}$$

• "growing" mode of \mathcal{R}_c stays constant on super-(sound) horizon scales.

 \cdot The existence of a constant mode is a general property of any cosmological model.

But this does not mean that adiabatic \mathcal{R}_c is constant on super-horizon scales.

• Inflaton perturbation on flat slicing (assume $c_s = 1$ again)

Alternatively, in terms of χ on $\mathcal{R} = 0$ hypersurface (flat slicing),

$$\chi_F \equiv \chi - \frac{\phi'}{\mathcal{H}}\mathcal{R} = -\frac{\phi'}{\mathcal{H}}\mathcal{R}_c$$

$$S_{2}^{*} = S_{2}^{*}[\chi_{F}] = \int d\eta \, d^{3}x \, \frac{a^{2}}{2} \left(\chi_{F}^{\prime 2} - (\nabla \chi_{F})^{2} - a^{2}m_{eff}^{2} \chi_{F}^{2} \right);$$
$$m_{eff}^{2} = -\frac{\left\{ a^{2} \left(\phi^{\prime} / \mathcal{H} \right)^{\prime} \right\}^{\prime}}{a^{4} \left(\phi^{\prime} / \mathcal{H} \right)} = \partial_{\phi}^{2}V + \frac{2}{M_{P}^{2}} \frac{d}{dt} \left(\frac{V}{H} \right)$$

 $\chi_F \sim$ minimally coupled almost massless scalar in de Sitter space

: $\partial_{\phi}^2 V \ll H^2$, $(2/M_P^2)(V/H) \approx 6\dot{H} \ll H^2$ for slow-roll inflation. (N.B. the sufficient conditions for slow roll: $\partial_{\phi}^2 V \ll 3H^2 \& \dot{H} \ll H^2$.)

 \cdot de Sitter approximation for the background:

$$H = \text{const.}, \quad a(\eta) = \frac{1}{-H\eta} \quad (-\infty < \eta < 0)$$

This is a good approximation for $k > \mathcal{H}$ (sub-horizon scale) modes

• Canonical quantization

$$\begin{aligned} \pi(\eta, \vec{x}) &= \frac{\delta S_{2}^{*}[\chi_{F}]}{\delta \chi_{F}'(\eta, \vec{x})}, \quad [\chi_{F}(\eta, \vec{x}), \pi(\eta, \vec{x}')] = i\hbar\delta(\vec{x} - \vec{x}') \\ \Rightarrow \quad \hat{\chi}_{F} &= \int \frac{d^{3}k}{(2\pi)^{3/2}} \left(\hat{a}_{\vec{k}} \, \chi_{k}(\eta) \, e^{i\vec{k}\cdot\vec{x}} + \text{ h.c.} \right); \quad [\hat{a}_{\vec{k}}, \, \hat{a}_{\vec{k}'}^{\dagger}] = \hbar\delta(\vec{k} - \vec{k}') \\ \chi_{k}'' + 2\mathcal{H}\chi_{k}' + \left(k^{2} + m_{eff}^{2}a^{2}\right)\chi_{k} = 0; \quad \chi_{\vec{k}} \, \bar{\chi}_{\vec{k}}' - \chi_{\vec{k}}' \, \bar{\chi}_{\vec{k}} = \frac{i}{a^{2}} \\ \Leftrightarrow \quad \ddot{\chi}_{k} + 3H\dot{\chi}_{k} + \left(\frac{k^{2}}{a^{2}} + m_{eff}^{2}\right)\chi_{k} = 0; \quad \chi_{\vec{k}} \, \bar{\chi}_{\vec{k}}' - \dot{\chi}_{\vec{k}}' \, \bar{\chi}_{\vec{k}} = \frac{i}{a^{3}} \\ \text{slow roll} \quad \Rightarrow \quad m_{eff}^{2} \ll H^{2} \quad \sim \text{ massless} \end{aligned}$$

de Sitter approximation:

$$\Rightarrow \quad \chi_k \approx \frac{H}{(2k)^{3/2}} \left(i - k\eta \right) e^{-ik\eta} \quad \begin{cases} \overrightarrow{H} \rightarrow \infty \quad \frac{1}{\sqrt{2ka}} e^{-ik\eta} \\ \overrightarrow{H} \rightarrow \infty \quad \frac{H}{\sqrt{2k^3}} e^{-i\alpha_k} \end{cases}$$

$$\left\langle \delta \phi^2 \right\rangle_k \Big|_{\text{on flat slice}} = \left\langle \chi_F^2 \right\rangle_k \equiv \frac{4\pi k^3}{(2\pi)^3} |\chi_k|^2 \to \left(\frac{H}{2\pi}\right)^2 \quad \text{for} \quad k \lesssim \mathcal{H} \quad (\hbar = 1)$$

- · de Sitter approximation breaks down at $k \ll \mathcal{H}$.
- i.e., the time-variation of χ_k on super-horizon scales cannot be neglected.
- However, the corresponding mode of \mathcal{R}_c becomes constant on super-horizon scales.

$$\Rightarrow \quad \mathcal{R}_{c,k}(\eta) \approx \mathcal{R}_{c,k}(\eta_k) = -\frac{\mathcal{H}}{\phi'} \chi_k(\eta_k) \approx \frac{H^2(t_k)}{\sqrt{2k^3} \,\dot{\phi}(t_k)} e^{-i\alpha_k}$$

 $t = t_k \quad \Leftrightarrow \quad \eta = \eta_k \quad \Leftrightarrow \quad k = \mathcal{H}(\eta_k) \quad \cdots \text{ horizon crossing time}$

Although not quite intuitive, one can quantize \mathcal{R}_c from the beginning:

$$S_2^* = \int d\eta \, d^3x \, \frac{z^2}{2} \left(\mathcal{R}_c^{\prime \, 2} - (\nabla \mathcal{R}_c)^2 \right); \quad z \equiv \frac{a\phi'}{\mathcal{H}}, \quad \mathcal{H} \equiv \frac{a'}{a} = a \, H$$

$$P_c(\eta, \vec{x}) = \frac{\delta S_2^*}{\delta \mathcal{R}'_c(\eta, \vec{x})}, \quad [\mathcal{R}_c(\eta, \vec{x}), P_c(\eta, \vec{x}')] = i\hbar\delta(\vec{x} - \vec{x}')$$

$$\Rightarrow \quad \hat{\mathcal{R}}_{c} = \int \frac{d^{3}k}{(2\pi)^{3/2}} \left(\hat{a}_{\vec{k}} r_{k}(\eta) e^{i\vec{k}\cdot\vec{x}} + \text{h.c.} \right); \quad [\hat{a}_{\vec{k}}, \, \hat{a}_{\vec{k}'}^{\dagger}] = \hbar\delta(\vec{k} - \vec{k}')$$
$$r_{k}'' + 2\frac{z'}{z}r_{k}' + k^{2}r_{k} = 0; \quad r_{k} \, \bar{r}_{k}' - r_{k}' \, \bar{r}_{k} = \frac{i}{z^{2}}$$

$$\Rightarrow r_k \approx \begin{cases} \overrightarrow{\mathcal{H}} \stackrel{\longrightarrow}{a\phi} \frac{H}{a\phi} \frac{1}{\sqrt{2k}} e^{-ik\eta} \\ \\ \overrightarrow{\mathcal{H}} \stackrel{\longrightarrow}{\rightarrow} \frac{H^2}{\phi} \Big|_{\eta=\eta_k} \frac{1}{\sqrt{2k^3}} e^{-ik\eta_k}; \quad -k\eta_k \approx 1 (k \approx \mathcal{H}) \end{cases}$$

$$\left\langle \mathcal{R}_{c}^{2} \right\rangle_{k} \equiv \frac{4\pi k^{3}}{(2\pi)^{3}} |r_{k}|^{2} \rightarrow \left(\frac{H^{2}}{2\pi \dot{\phi}} \right)^{2} \bigg|_{k=\mathcal{H}} \quad \text{for} \quad -k\eta \to 0$$

• Curvature perturbation spectrum (say, at $\eta = \eta_f$)

$$\left\langle \mathcal{R}_{c}^{2} \right\rangle_{k} \equiv \frac{4\pi k^{3}}{(2\pi)^{3}} P_{\mathcal{R}_{c}}(k;\eta) = \frac{4\pi k^{3}}{(2\pi)^{3}} \left| \mathcal{R}_{c,k}(\eta) \right|^{2} = \left(\frac{H^{2}}{2\pi \dot{\phi}} \right)^{2} \Big|_{t=t_{k}}$$

Since dN = -Hdt,

$$\frac{\partial N}{\partial \phi} = -\frac{H}{\dot{\phi}} \quad \Rightarrow \quad \left\langle \mathcal{R}_c^2 \right\rangle_k = \left(\frac{\partial N}{\partial \phi} \frac{H}{2\pi} \right)^2 \Big|_{t=t_k} = \left(\frac{\partial N}{\partial \phi} \,\delta \phi \right)^2 \Big|_{t=t_k} \text{ on flat slice}$$

That is, for single-field slow-roll inflation,

$$\mathcal{R}_c = \delta N|_{t=t_k} = \frac{\partial N}{\partial \phi} \delta \phi \Big|_{t=t_k} \quad (\delta \phi = \frac{H}{2\pi}) \quad \text{on flat slice}$$

Only the knowledge of the homogeneous background is sufficient to predict the perturbation spectrum: δN -formula

If $\langle \mathcal{R}_c^2 \rangle_k \propto k^{n_s - 1}$

 $n_s = 1$: scale-invariant (Harrison-Zeldovich) spectrum

 $n_s = 1 - \epsilon \ (\epsilon \ll 1)$ for chaotic inflation $(V(\phi) \propto \phi^p)$.

• Large angle CMB anisotropy

$$\begin{pmatrix} \delta T \\ T \end{pmatrix} (\vec{\gamma}, \eta_0) = (\zeta_r + \Theta) (\eta_{dec}, \vec{x}(\eta_{dec})) + \int_{\eta_{dec}}^{\eta_0} d\eta \, \partial_\eta \Theta(\eta, \vec{x}(\eta))$$
(Sachs-Wolfe) (Integrated Sachs-Wolfe)

$$\vec{x} (\eta_{dec}) \qquad (Integrated Sachs-Wolfe)$$

$$\zeta_r : \text{ curvature perturbation on } \rho_{\text{photon}} = \text{const. surfaces}$$

$$\Theta \equiv \Psi - \Phi \\ \Psi = \text{Newton potential} \\ \Phi = \text{curvature pert. on Newton slice}$$

For a dust-dominated universe at decoupling,

SW: $\zeta_{\rm r} + \Theta = -\frac{1}{5} \mathcal{R}_{c*} - \frac{2}{5} S_{\rm dr} = \frac{1}{3} \Psi_* - \frac{2}{5} S_{\rm dr}$, no ISW: $\partial_{\eta} \Theta \approx 0$ \mathcal{R}_{c*} : primordial adiabatic curvature perturbation; $\Phi_* = -\Psi_* = \frac{3}{5} \mathcal{R}_{c*}$ $S_{\rm dr} = \frac{\delta \rho_{\rm d}}{\rho_{\rm d}} - \frac{3}{4} \frac{\delta \rho_{\rm r}}{\rho_{\rm r}} \sim \text{entropy perturbation}$ • Observational implications of Large-angle CMB anisotropy COBE-DMR ('96); WMAP 9yr ('12); Planck ('18)

 $\left\langle \left(\frac{\delta T}{T}\right)^2 \right\rangle \sim 10^{-10}$ at $\theta \sim 10^\circ$. $\frac{\delta T}{T} = \frac{1}{3}\Psi + \cdots$ for adiabatic perturbation $\langle \Psi^2 \rangle_k \sim 10^{-10} \text{ at } \frac{k_0}{a_0} = H_0 \sim \frac{1}{\text{present horizon scale}} \quad (H_0^{-1} \sim 3000 \,\text{Mpc} \sim 10^{28} \text{cm})$ For $V = \frac{1}{2}m^2\phi^2$, $\left\langle \Psi^2 \right\rangle_{k_0} \approx \left(\frac{3}{5}\right)^2 \left\langle \mathcal{R}_c^2 \right\rangle_{k_0} = \left(\frac{3}{5}\right)^2 \left(\frac{H^2}{2\pi\dot{\phi}}\right)^2 \bigg|_{k_0} \approx \frac{m^2}{25M_P^2} N^2(\phi) \bigg|_{\underline{k_0}=H}$ $\Rightarrow \begin{cases} m \sim 10^{13} \text{GeV} \\ V \sim (10^{16} \text{GeV})^4 \end{cases}$

• power-law index: $n_{\text{Planck}} = 0.9649 \pm 0.0042$

Blue or scale invariant spectrum $(n_s \ge 1)$ is excluded at high CL!

• Tensor-type perturbations

$$ds^2 = -dt^2 + a^2(t) \left(\delta_{ij} + h_{ij}\right) dx^i dx^j$$

 $h_{ij} \cdots$ Transverse-Traceless

$$\begin{split} \delta^2 S_G &= \frac{M_P^2}{8} \int d^4 x \, a^3 \left(\dot{h}_{ij}^2 - \frac{1}{a^2} (\nabla h_{ij})^2 \right) \\ &= \frac{1}{2} \int d^4 x \, a^3 \left(\dot{\varphi}_{ij}^2 - \frac{1}{a^2} (\nabla \varphi_{ij})^2 \right) \, ; \quad \varphi_{ij} := \frac{M_P}{2} h_{ij} \end{split}$$

 $\varphi_{ij} \sim \text{massless scalar} (2 \text{ degrees of freedom})$

$$\begin{split} \langle \varphi_{ij}^2 \rangle_k &= 2 \times \left(\frac{H}{2\pi}\right)^2 \\ \Rightarrow \frac{4\pi k^3}{(2\pi)^3} P_T(k) \equiv \langle h_{ij}^2 \rangle_k = 2 \times \frac{4}{M_P^2} \times \left(\frac{H}{2\pi}\right)^2 = \frac{2}{\pi^2} \frac{H^2}{M_P^2} \\ \text{contribute to CMB anisotropy} \end{split}$$
$$r \equiv \frac{T}{S} = \frac{\text{tensor}}{\text{scalar}} \sim \frac{\langle h_{ij}^2 \rangle}{\langle \mathcal{R}_c^2 \rangle} \equiv \frac{P_T(k)}{P_S(k)} = 24 \frac{\dot{\phi}^2}{V} \bigg|_{k_0 = aH} \qquad \text{slow roll} \quad \Rightarrow \quad r \ll 1. \\ r \sim 0.13 \quad \text{for} \quad V = \frac{1}{2} m^2 \phi^2 \quad \Leftrightarrow \quad r_{\text{Planck}} < 0.1 \quad (95\% \text{ CL}) \end{split}$$

\bullet Spectral index

* scalar-type (curvature) perturbation

$$n_S \equiv 1 + \frac{d \ln[P_{\mathcal{R}}(k)k^3]}{d \ln k}.$$

$$k = a(t_k)H \quad \to \quad d \ln k = \frac{da}{a} + \frac{dH}{H} \approx \frac{da}{a} = \frac{d}{Hdt}\Big|_{t=t_k}$$

For slow-roll inflation,

$$n_{S} - 1 = \frac{d}{Hdt} \ln[P_{\mathcal{R}}(k)k^{3}] = \frac{d}{Hdt} \left(\ln H^{4} - \ln \dot{\phi}^{2} \right)$$
$$\approx \frac{2V''V - 3V'^{2}}{8\pi GV^{2}} = 2\eta_{V} - 6\epsilon_{V}.$$

 \star observed power-law index: $n_{\rm Planck} = 0.9649 \pm 0.0042$

* tensor-type perturbation

$$n_T \equiv \frac{d \ln[P_T(k)k^3]}{d \ln k} = \frac{d}{Hdt} \ln[P_T(k)k^3] = \frac{d}{Hdt} \ln H^2 = 2\frac{\dot{H}}{H^2} = -\frac{8\pi G\dot{\phi}^2}{H^2} \\ \approx -3\frac{\dot{\phi}^2}{V} = -\frac{1}{8}\frac{P_T(k)}{P_S(k)} = -\frac{r}{8} \quad \Leftarrow \quad \text{consistency relation} \, !$$

٠

- Model dependence
 - * power-law inflation

$$V(\phi) \propto \exp[\lambda \phi/m_{pl}] \leftarrow \text{ dilaton in string theories } ?$$

$$a \propto t^{\alpha} \quad (\alpha = \frac{16\pi}{\lambda^2})$$

$$\Rightarrow \quad n_S < 1 , \qquad \frac{T}{S} \gtrsim 0.1$$

* hybrid inflation \leftarrow supergravity-motivated ?

e.g.,
$$V(\phi, \psi) = \frac{1}{4\lambda} \left(M^2 - \lambda \psi^2 \right)^2 + \frac{1}{2} m^2 \phi^2 + \frac{1}{2} g^2 \phi^2 \psi^2$$

$$a \propto e^{Ht}$$
, $H^2 \approx \frac{8\pi G}{3} V_0$ when $\psi = 0, \phi > M/g$.
 $\Rightarrow n_S > 1, \frac{T}{S}$ can be large or small.

* quartic hilltop inflation

$$V(\phi) = V_0 - \frac{\lambda}{4}\phi^4 + \cdots \Rightarrow n_S \approx -\frac{3}{N}, \quad \frac{T}{S} \propto \frac{1}{N^3}$$

 $\star~\phi^2$ model excluded at high CL, $r \lesssim 0.1, \, n_s < 1$ at extremely high CL.

§4. Summary of single-field slow-roll inflation

- The growing mode of the curvature perturbation on comoving slices \mathcal{R}_c stays constant super-horizon scales.
 - $\cdot \mathcal{R}_c \approx \Delta N$ in the slow-roll case.
 - $\cdot \mathcal{R}_c$ may vary in time if the slow-roll condition is violated.
 - \cdot Slow-roll models predict almost scale-invariant spectrum, but other spectral shapes are possible.
- Tensor perturbations may or may not be negligible.

On-going and future observations

- LSST, Euclid, $\cdots \sim 5 \times 10^7$ galaxies, up to $z \lesssim 2$
- LiteBIRD, Simons Observatory, \cdots high resolution CMB polarization map $\underset{\Downarrow}{\Downarrow}$ Inflaton potential may be determined $\underset{\Downarrow}{\Downarrow}$

Understanding of physics of the early universe (\approx extreme high energy physics)