A Cosmic Conundrum

Eoin Ó Colgáin

Hubble tension

Cosmology is nowadays a data-driven science.

Difference in the Hubble constant between early & late universe determinations is causing excitement.

Hints of breakdown in Λ CDM, cf. string theory "Swampland".

"The Hubble tension between the early and late universe may be the most exciting development in cosmology in decades." - Adam Riess

"we wouldn't call it a tension or a problem, but rather a crisis." - David Gross

$flat - \Lambda CDM$

Outcome of July 2019 KITP meeting

Verde, Treu, Riess (1907.10625)

MONDAY

LIGO (1908.06060) $H_0 = 68^{+14}_{-7} \text{ km s}^{-1} \text{ Mpc}^{-1}$

Evolution in Hubble

SHOES

$$m_B - M = 25 + 5\log_{10}\left(\frac{d_L}{\text{Mpc}}\right)$$

redshift range

0.0233 < z < 0.15

HOLiCOW

WFI2033-4723

$$(z_d, z_s) = (0.6575, 1.662)$$

Strong-lensing time delay
$$t(\theta, \beta) = \frac{(1+z_d)D_dD_s}{cD_{ds}} \left[\frac{(\theta-\beta)^2}{2} - \psi(\theta) \right]$$

HOLiCOW

Interesting trend in Hubble with lens distance!!!

ACDM Tension

Other tensions exist around 2 σ .

$$S_8 = \sigma_8 (\Omega_m/0.3)^{\alpha}$$

Intriguing puzzle: are we looking at new physics?

arXiv.org > astro-ph > arXiv:1903.07603

Search...

Help | Adva

Astrophysics > Cosmology and Nongalactic Astrophysics

Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond LambdaCDM

Adam G. Riess, Stefano Casertano, Wenlong Yuan, Lucas M. Macri, Dan Scolnic

Standard model ACDM has only 6 parameters, cf. 19 in particle physics.

So as a theorist, one can expect a breakdown in Λ CDM.

New early physics

Cosmic chronometers, BAO data

$$H(z) = H_0\sqrt{1 - \omega_m + \omega_m(1+z)^3}$$
 $H_0 = 67.73 \pm 3.04$, $\omega_m = 0.31 \pm 0.07$

Preference for Planck

$$H_0 = 67.4 \pm 0.5, \quad \omega_m = 0.315 \pm 0.007$$

New early physics

High Hubble appears to be in conflict with BAO.

BAO does not measure Hubble parameter directly.

$$H(z)r_d, \quad r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz$$

Scalar field acting as early dark energy

Poulin et al. (2019)

Increase # of relativistic d. o. f.

 $N_{eff} \sim 4$

extra self-interacting neutrinos

Kreisch et al. (2019)

New late physics

Separate strategy: take all data at face value.

DM becomes DE at late times.

$$\dot{\rho}_c + 3H\rho_c = \xi H\rho_x,$$

$$\dot{\rho}_x + 3H(1+\omega)\rho_x = -\xi H\rho_x \qquad \text{? 72}$$

76 - 72 - 68 - 64 - -1.0 -0.8 -0.6 -0.4 -0.2 0.0

Di Valentino et al. (1908.04281)

Something else?

Could there be a more mundane explanation?

Boehringer, Chon, Collins (1907.12402)

Underdensity
$$-30 \pm 15\% (-20 \pm 10\%)$$
 $100 (\sim 140) {\rm Mpc}$

CosmicFlows (1905.08329)

ACDM Tension in Type Ia?

Hint of an underdensity in best cosmological probe.

Distance modulus
$$d_L(z) = c(1+z) \int_0^z \frac{\mathrm{d}z'}{H(z')}$$

"Hubble-Lemaître" law at low z

$$d_L pprox rac{c}{H_0} z$$

$$\mu = m_B - M = 25 + 5\log_{10}\left(\frac{d_L}{\text{Mpc}}\right)$$

Pantheon Dataset

Scolnic et al. (2017)

However, $\omega_{\rm m}$ appears to show running with $z_{\rm max}$.

$$\chi^2 = \Delta \vec{\mu}^T \cdot \mathbf{C}^{-1} \cdot \Delta \vec{\mu}, \quad \Delta \vec{\mu} = \vec{\mu} - \vec{\mu}_{\text{model}}(H_0, \omega_m)$$
$$\mathbf{C} = \mathbf{D}_{\text{stat}} + \mathbf{C}_{\text{sys}}$$

1903.11743 (JCAP)

(Independently observed by M. van Putten, confirmed by D. Scolnic)

Underdensity in Riess et al. range of redshift?

Statistical significance between 1-2 σ in window.

Markov Chain Monte Carlo (100,000 iterations)

Astro2020 Science White Paper

The Next Generation of Cosmological Measurements with Type Ia Supernovae

Thematic Areas: Cosmology and Fundamental Physics

Scolnic & usual suspects (2019)

"In the 2020s, surveys will discover hundreds of thousands of SNe Ia across a large redshift range (0 < z < 2)..."

"The boost in statistics from ongoing/recent surveys will be on the order of $5\times$ at low-z (owing to ZTF, Foundation, ATLAS, ASAS-SN and $2\times$ at mid-z (owing to DES). The boost in statistics from future surveys will be on the order of $300\times$ at mid-z (owing to LSST) and $1000\times$ at high-z (owing to WFIRST). JWST will be able to extend to even higher redshifts, perhaps $z\approx5...$ "

Summary

Hubble (ACDM) tension is an exciting, fast developing field.

It is multidisciplinary (astronomy, data science, theory).

People are quick to make claims of new physics.

Likely resolution will be interdisciplinary.

Underdensity (personally) is quite compelling + needs study.

Universe may be "lumpier" than we imagine.