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    Motivation
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FIG. 5: 90% confidence level upper limit on �SI from this
work (thick black line) with the 1� (green) and 2� (yel-
low) sensitivity bands. Previous results from LUX [6] and
PandaX-II [7] are shown for comparison. The inset shows
these limits and corresponding ±1� bands normalized to the
median of this work’s sensitivity band. The normalized me-
dian of the PandaX-II sensitivity band is shown as a dotted
line.

injecting an undisclosed number and class of events in
order to protect against fine-tuning of models or selec-
tion conditions in the post-unblinding phase. After the
post-unblinding modifications described above, the num-
ber of injected salt and their properties were revealed to
be two randomly selected 241AmBe events, which had
not motivated any post-unblinding scrutiny. The num-
ber of events in the NR reference region in Table I is con-
sistent with background expectations. The profile likeli-
hood analysis indicates no significant excesses in the 1.3 t
fiducial mass at any WIMP mass, with a p-value for the
background-only hypothesis of 0.28, 0.41, and 0.22 at
6, 50, and 200 GeV/c2, respectively. Figure 5 shows the
resulting 90% confidence level upper limit on �SI . The
2� sensitivity band spans an order of magnitude, indi-
cating the large random variation in upper limits due to
statistical fluctuations of the background (common to all
rare-event searches). The sensitivity itself is una↵ected
by such fluctuations, and is thus the appropriate mea-
sure of the capabilities of an experiment [44]. The inset
in Fig. 5 shows that the median sensitivity of this search
is ⇠7.0 times better than previous experiments [6, 7] at
WIMP masses > 50 GeV/c2.

In summary, we performed a DM search using an ex-
posure of 278.8 days ⇥ 1.3 t = 1.0 t⇥yr, with an ER
background rate of (82+5

�3 (sys) ± 3 (stat)) events/(t ⇥
yr ⇥ keVee), the lowest ever achieved in a DM search
experiment. We found no significant excess above back-
ground and set an upper limit on the WIMP-nucleon
spin-independent elastic scattering cross-section �SI at
4.1⇥10�47 cm2 for a mass of 30 GeV/c2, the most strin-

gent limit to date for WIMP masses above 6 GeV/c2. An
imminent detector upgrade, XENONnT, will increase the
target mass to 5.9 t. The sensitivity will improve upon
this result by more than an order of magnitude.
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Whenever we see this cosmic pie, we are always confused: what is the nature 
of the dark matter (DM) & the baryon asymmetry of the universe?
A lot of experiments have be done to unravel these long-standing problems.
However, there is no signals of new physics at LHC and dark matter direct search.
This situation may just point us towards new approaches, especially (my 
personal interest)  Radio telescope experiments (SKA, FAST, GBT…)  &
                                Laser Interferometer experiments (LISA, Tianqin/Taiji…)

Phys.Rev.Lett. 121 (2018) no.11, 111302 

Why negligible antimatter,  
(baryon asymmetry of the universe)?

I will focus on new approaches to explore for two popular (pseudo) scalar  
   DM: axion-like particles and scalar dark matter in scalar extended model.



EW phase 
transition and 
baryogenesis:

LISA,
Tianqin/Taiji

QCD phase transition and 
axion cold DM:

SKA, FAST, GBT(radio telescope)

credit:D.Baumann
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The Square Kilometre Array (SKA) 

credit: SKA website

Early science observations are expected to start in 2020 with a partial array.



The Square Kilometre Array (SKA) 

credit: SKA website

Early science observations are expected to start in 2020 with a partial array.

Western Australia

Organisations from 13 countries are members of the SKA Organisation – Australia, Canada, China, France, 
Germany, India, Italy, New Zealand, Spain, South Africa, Sweden, The Netherlands and the United Kingdom. 



  Powerful SKA experiments

➢How do galaxies evolve? What is dark energy? 
➢ Strong-field tests of gravity using pulsars and 

black holes 
➢The origin and evolution of cosmic magnetism 
➢Probing the Cosmic Dawn 
➢The cradle of life 

➢Flexible design to enable exploration of the 
unknown, such as axion DM,
 SKA can also helps to explore the evolution history of 

the universe around 100 MeV, dark matter. 
Pulsar timing signal from ultralight scalar DM (probe 

fuzzy DM by SKA)  JCAP 1402 (2014) 019,A. Khmelnitsky, V. Rubakov

High sensitivity: SKA surveys will probe to sub-micro-Jy levels 
The extremely high sensitivity of the thousands of individual radio receivers,  
combining to create the world’s largest radio telescope will give us 
insight into many aspects of fundamental physics 

credit: SKA website



The Five-hundred-meter Aperture Spherical radio Telescope (FAST)

Credit:FAST website 

1061 days in operation since 25th Sep. 2016



The Green Bank Telescope (GBT) 

credit:GBT website

GBT is running observations roughly 6,500 hours each year



Laser Interferometer Space Antenna (LISA) 

credit:LISA website

Launch in 2034 or even earlier



  Powerful LISA experiments
➢The true shape of Higgs potential (Exp: 

complementary test with CEPC)(FPH,et.al,Phys.Rev. D93 

(2016) no.10, 103515，Phys.Rev. D94 (2016) no.4, 041702 ) 
➢ Baryon asymmetry of the universe (baryogenesis) 
➢Gravitational wave (Exp: LISA 2034) 
➢DM blind spots  Phys.Rev. D98 (2018) no.9, 095022, FPH,Jianghao Yu 

➢ Asymmetry DM 
(The cosmic phase transition with Q-balls production mechanism can explain 
the baryogenesis and DM simultaneously, where constraints on DM masses 
and reverse dilution are significantly relaxed.  
FPH, Chong Sheng Li,  Phys.Rev. D96 (2017) no.9, 095028)

 LISA in synergy with CEPC helps to explore the       
evolution history of the universe at several hundred GeV 
temperature, DM and baryogenesis.



 
Particle approach  
we can build more powerful 
colliders, such as planned 
CEPC/SppC, FCC etc. 
   

Complementary of particle and wave experiments  

Wave approach 
GW detectors can test Higgs  
potential as complementary 
approach. (LISA launch 2034) 

Relate by 
EW phase 
transition/
baryogenesis 

Double test on 
the Higgs 
potential and 
baryogenesis, 
DM



We firstly study using the SKA-like experiments to 
explore the resonant conversion of axion cold DM to 
radio signal from magnetized astrophysical sources, 
such as neutron star, magnetar and pulsar.

FPH, K. Kadota, T. Sekiguchi, H. Tashiro, Phys.Rev. D97 (2018) no.12, 123001, arXiv:1803.08230

Axion or axion-like particle motivated from strong 
CP problem or string theory is still one of the most 
attractive and promising DM candidate.

I.Typical pseudo scalar DM: 
Explore the axion cold DM



FPH, K. Kadota, T. Sekiguchi, H. Tashiro, Phys.Rev. D97 (2018) no.12, 123001



Radio telescope search for the resonant 
conversion of cold DM axions  

from the magnetized astrophysical sources 

➢Cold DM is composed of non-relativistic axion or 
axion-like particles, and can be accreted around 
the neutron star 

➢Neutron star (or pulsar and magnetar) has the 
strongest position-dependent magnetic field in the 
universe 

➢Neutron star is covered by magnetosphere and 
photon becomes massive in the magnetosphere 

Three key points:



Quick sketch of the neutron star size 

Radius of the neutron star is slightly than the 
radius of the LHC circle. 



Strong magnetic field in the magnetosphere of   
Neutron star, Pulsar, Magnetar:  

the strongest magnetic field in the Universe

1.   Mass: from 1 to 2 solar mass 

2.  Radius: 

3. Strongest magnetic field at the surface  
of the neutron star

B0 ⇡ 1012 � 1015G

4. Neutron star is surrounded by large 
 region of magnetosphere,  

where photon becomes massive. 

r0 ⇠ 10� 20km

r ⇠ 100r0

B0 ⇠ 3.3⇥ 1019
p

PṖ G
P is the period of neutron star

The typical diameter of neutron star  
is  just  half-Marathon.

Alfven



  Axion-photon conversion in magnetosphere
The Lagrangian for axion-photon conversion the magnetosphere 

Massive Photon: In the magnetosphere 
of the neutron star, photon obtains the 
effective mass in the magnetized plasma.  
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We study the conditions for the adiabatic resonant conversion of the cold dark matter (CDM) axions into
photons in the astrophysically sourced strong magnetic fields such as those in the neutron star
magnetosphere. We demonstrate the possibility that the forthcoming radio telescopes such as the SKA
(Square Kilometre Array) can probe those photon signals from the CDM axions.

DOI: 10.1103/PhysRevD.97.123001

I. INTRODUCTION

Since the proposal of the Peccei-Quinn (PQ) mechanism
as an elegant solution of the QCD strongCP problem, there
have been many attempts to search for the axion which
naturally arises as a pseudoscalar particle of the PQ
symmetry [1–7]. Besides the QCD axions, more generally,
the axion-like particles (ALPs) also have been widely
discussed and can commonly arise in the string theory
[8]. The possibility for these axions/ALPs to be the CDM
candidates also gives a tantalizing motivation to search for
them [9–12]. It is intriguing that the axion CDMmass range
μeV–meV (corresponding to the frequency 0.1–100 GHz)
which is motivated from the QCD axion as a CDM
candidate turns out to overlap with the frequency range
which the radio telescope can probe [13–15].
We seek the radio telescope probe of CDM axions

through their adiabatic resonant conversion into photons
in the astrophysically sourced strong magnetic fields such
as those in the vicinity of the neutron stars/magnetars. This
is in stark contrast to the relativistic axion with the X-ray
energy for which it has been claimed that the adiabatic
resonant conversion cannot be realized in the strongly
magnetized plasma, such as the neutron star magneto-
sphere, due to the significant vacuum polarization contri-
bution to the photon dispersion relation [16,17].
The axion and photon can convert to each other in

presence of the magnetic fields through the Primakoff
process, and many attempts have been made to seek the

axions using a powerful magnet in the laboratory to result
in the tight bounds on the axion mass and its coupling to
photons [18–24]. Many studies also have been done for the
axion search using the astrophysically sourced magnetic
fields such as the intergalactic magnetic fields and stellar
magnetic fields [16,17,25–30]. The use of actual astro-
physical data from the gamma ray, X-ray, optical, and radio
telescopes also helped in reducing the viable axion param-
eter space, but many of those analyses assumed the
relativistic axion converting into a photon or the CDM
axion decaying into two photons [31–34]. The potential
radio telescope probe of the nonrelativistic axion converted
into the photon in the presence of the astrophysical
magnetic fields has been recently studied assuming the
nonresonant conversion but little study has been done on
the resonant conversion for the radio surveys [35–38]. Our
study on the adiabatic resonant conversion of the CDM
axion would complement those previous studies for the
further radio telescope exploration of the axion search.
Section II outlines the setup of our study, and Sec. III
examines the conditions for the adiabatic resonant con-
version of axions into photons. Section IV discusses the
detectability of the photon flux by a radio telescope as a
result of such an efficient axion-photon conversion.

II. THE AXION-PHOTON WAVE PROPAGATION
IN THE MAGNETIC FIELDS

The Lagrangian for the axion-photon system in the
presence of the magnetic fields relevant for the magnetized
astrophysical sources such as the neutron stars is

L ¼ −
1

4
F μνF μν þ 1

2
ð∂μa∂μa −m2

aa2Þ þ Lint þ LQED; ð1Þ

where a is the axion with the mass ma, and F μν is the
electromagnetic field tensor. The pseudoscalar axion can

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.
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convert to the spin-1 photon in the presence of the external
magnetic field perpendicular to the photon propagation,
and the interaction term in the Lagrangian for the electro-
magnetic field and the axion is

Lint ¼
1

4
gF̃ μνF μνa ¼ −gE ·Ba; ð2Þ

where g represents the axion-photon coupling with the
dimension ½mass%−1, E is the electric field associated with
the photon, and B is the transverse component (with respect
to the photon propagation) of the magnetic field.1 The
axion in our discussions, for the sake of brevity, refers to
the axion and more generally to the ALP as well defined by
this Lagrangian characterized by its mass and coupling to
the photon (we accordingly treat ma, g as independent
parameters).
LQED represents the quantum correction to the Maxwell

equation (due to the QED vacuum polarization), and it can
be given by the Euler-Heisenberg action whose leading
order term is [16,39]

LQED ¼ α2

90m4
e

7

4
ðF μν F̃ μνÞ2; ð3Þ

where α ¼ e2=4π is the fine-structure constant. The photon
obtains the effective mass in the magnetized plasma. The
contribution of the photon mass m2

γ ¼ Qpl −QQED comes
from the vacuum polarization

QQED ¼ 7α
45π

ω2 B 2

B 2
crit

; ð4Þ

with B crit ¼ m2
e=e ¼ 4.4 × 1013 G and the plasma mass

characterized by the plasma frequency ωpl,

Qplasma ¼ ω2
plasma ¼ 4πα

ne
me

; ð5Þ

with the charged plasma density ne. It has been pointed out
that the QED vacuum polarization effect spoils the reali-
zation of the adiabatic resonant conversion between the
relativistic axion (with the observable X-ray energy range)
and the photon in the vicinity of a neutron star with strong
magnetic fields [16,17]. We note here that the vacuum
polarization effect is not important compared with the
plasma effect for our axion CDM scenario. As a simple
estimation, adopting the Goldreich-Julian charge density
[40] for the plasma density,

nGJe ¼ 7 × 10−2
1s
P
B ðrÞ
1 G

1

cm3
; ð6Þ

where P is the neutron star spin period,

Qpl

QQED
∼ 5 × 108

!
μeV
ω

"
2 1012 G

B
1 sec
P

: ð7Þ

We can, hence, safely ignore QQED with respect to Qpl for
the parameter range of our interest because of a small
photon frequency ω relevant for the frequency range
sensitive to the radio telescopes in our CDM axion scenario
(ω ∼ma).
The equation for the axion-photon plane wave with a

frequency ω reads
#
ω2 þ ∂2

z þ
!−m2

γ gB ω

gB ω −m2
a

"$!
γ

a

"
¼ 0; ð8Þ

where we assumed for simplicity the time-independent
magnetic field B ðrÞ [16]. The mass matrix here can be
diagonalized by the rotation unitary matrix,

U ¼
!

cos θ̃ sin θ̃

− sin θ̃ cos θ̃

"
; ð9Þ

with

cos 2θ̃ ¼
m2

a −m2
γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4g2B 2ω2 þ ðm2
γ −m2

aÞ2
q

sin 2θ̃ ¼ 2gB ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2B 2ω2 þ ðm2

γ −m2
aÞ2

q ; ð10Þ

where the tilde represents the mixing angle in the medium
to be distinguished from that in the vacuum. The maximum
mixing can occur when m2

γðrÞ ≈ma. The mass eigenvalues
are

m2
1;2 ¼

ðm2
γ þm2

aÞ '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

γ −m2
aÞ2 þ 4g2B 2ω2

q

2
ð11Þ

with the corresponding momentum for the mass eigen-
states:

k21;2 ¼ ω2 −m2
1;2: ð12Þ

If the magnetic field is homogeneous, the conversion
probability for the axion into photon becomes

pa→γ ¼ sin2 2θ̃ðzÞ sin2½zðk1 − k2Þ=2% ð13Þ

for the wave dominated by the axion component at z ¼ 0.
This is analogous to the neutrino oscillations, and we can
interpret the axion-photon conversion in an analogous
manner. Even though the magnetic field is inhomogeneous
in the neutron star magnetosphere, the conversion in such a

1The photon here has a liner polarization parallel to the
external magnetic field. The other photon polarization state
and the photon mass term due to the Cotton-Mouton effect
(which can cause the birefringence) are of little importance in our
discussions and thus will be ignored [16,39].
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that the QED vacuum polarization effect spoils the reali-
zation of the adiabatic resonant conversion between the
relativistic axion (with the observable X-ray energy range)
and the photon in the vicinity of a neutron star with strong
magnetic fields [16,17]. We note here that the vacuum
polarization effect is not important compared with the
plasma effect for our axion CDM scenario. As a simple
estimation, adopting the Goldreich-Julian charge density
[40] for the plasma density,
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We can, hence, safely ignore QQED with respect to Qpl for
the parameter range of our interest because of a small
photon frequency ω relevant for the frequency range
sensitive to the radio telescopes in our CDM axion scenario
(ω ∼ma).
The equation for the axion-photon plane wave with a

frequency ω reads
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where we assumed for simplicity the time-independent
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where the tilde represents the mixing angle in the medium
to be distinguished from that in the vacuum. The maximum
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with the corresponding momentum for the mass eigen-
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k21;2 ¼ ω2 −m2
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If the magnetic field is homogeneous, the conversion
probability for the axion into photon becomes

pa→γ ¼ sin2 2θ̃ðzÞ sin2½zðk1 − k2Þ=2% ð13Þ

for the wave dominated by the axion component at z ¼ 0.
This is analogous to the neutrino oscillations, and we can
interpret the axion-photon conversion in an analogous
manner. Even though the magnetic field is inhomogeneous
in the neutron star magnetosphere, the conversion in such a

1The photon here has a liner polarization parallel to the
external magnetic field. The other photon polarization state
and the photon mass term due to the Cotton-Mouton effect
(which can cause the birefringence) are of little importance in our
discussions and thus will be ignored [16,39].
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If the magnetic field is homogeneous, the conversion
probability for the axion into photon becomes
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for the wave dominated by the axion component at z ¼ 0.
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manner. Even though the magnetic field is inhomogeneous
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and the photon in the vicinity of a neutron star with strong
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polarization effect is not important compared with the
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with the corresponding momentum for the mass eigen-
states:

k21;2 ¼ ω2 −m2
1;2: ð12Þ

If the magnetic field is homogeneous, the conversion
probability for the axion into photon becomes

pa→γ ¼ sin2 2θ̃ðzÞ sin2½zðk1 − k2Þ=2% ð13Þ

for the wave dominated by the axion component at z ¼ 0.
This is analogous to the neutrino oscillations, and we can
interpret the axion-photon conversion in an analogous
manner. Even though the magnetic field is inhomogeneous
in the neutron star magnetosphere, the conversion in such a

1The photon here has a liner polarization parallel to the
external magnetic field. The other photon polarization state
and the photon mass term due to the Cotton-Mouton effect
(which can cause the birefringence) are of little importance in our
discussions and thus will be ignored [16,39].
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magnetic fields [16,17]. We note here that the vacuum
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We can, hence, safely ignore QQED with respect to Qpl for
the parameter range of our interest because of a small
photon frequency ω relevant for the frequency range
sensitive to the radio telescopes in our CDM axion scenario
(ω ∼ma).
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with the corresponding momentum for the mass eigen-
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If the magnetic field is homogeneous, the conversion
probability for the axion into photon becomes

pa→γ ¼ sin2 2θ̃ðzÞ sin2½zðk1 − k2Þ=2% ð13Þ

for the wave dominated by the axion component at z ¼ 0.
This is analogous to the neutrino oscillations, and we can
interpret the axion-photon conversion in an analogous
manner. Even though the magnetic field is inhomogeneous
in the neutron star magnetosphere, the conversion in such a

1The photon here has a liner polarization parallel to the
external magnetic field. The other photon polarization state
and the photon mass term due to the Cotton-Mouton effect
(which can cause the birefringence) are of little importance in our
discussions and thus will be ignored [16,39].
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for the wave dominated by the axion component at z ¼ 0.
This is analogous to the neutrino oscillations, and we can
interpret the axion-photon conversion in an analogous
manner. Even though the magnetic field is inhomogeneous
in the neutron star magnetosphere, the conversion in such a
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external magnetic field. The other photon polarization state
and the photon mass term due to the Cotton-Mouton effect
(which can cause the birefringence) are of little importance in our
discussions and thus will be ignored [16,39].
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,

B ðrÞ ¼ B 0

!
r
r0

"−3
; ð14Þ

and

m2
γðrÞ ¼ 4πα

neðrÞ
me

;

neðrÞ ¼ nGJe ðrÞ ¼ 7 × 10−2
1s
P
B ðrÞ
1 G

1

cm3
; ð15Þ

where r0 is the neutron star radius. The resonance radius is
defined at the level crossing point m2

γðrresÞ ¼ m2
a given by
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At the resonance, jm2
γ −m2

aj ≪ gB ω andm2
1;2 ≈m2

a $ gB ω.
From the mixing angle given in Eq. (10),

sin 2θ̃ ¼
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γÞ þ ð1 − ðma=mγÞ2Þ2
q

≡ c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ð1 − fðrÞÞ2

p ; ð17Þ

where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
resonance,
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δr > losc hence requires
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,

B ðrÞ ¼ B 0

!
r
r0

"−3
; ð14Þ

and

m2
γðrÞ ¼ 4πα

neðrÞ
me

;

neðrÞ ¼ nGJe ðrÞ ¼ 7 × 10−2
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B ðrÞ
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; ð15Þ

where r0 is the neutron star radius. The resonance radius is
defined at the level crossing point m2

γðrresÞ ¼ m2
a given by
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!
1014 G
B 0

"!
P

10 sec

"
: ð16Þ

At the resonance, jm2
γ −m2

aj ≪ gB ω andm2
1;2 ≈m2

a $ gB ω.
From the mixing angle given in Eq. (10),

sin 2θ̃ ¼
ð2gB ω=m2
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q

≡ c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ð1 − fðrÞÞ2

p ; ð17Þ

where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
resonance,

losc ¼
2π

jk1 − k2jres
; ð19Þ

δr > losc hence requires
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,

B ðrÞ ¼ B 0
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defined at the level crossing point m2
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At the resonance, jm2
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aj ≪ gB ω andm2
1;2 ≈m2

a $ gB ω.
From the mixing angle given in Eq. (10),
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
resonance,

losc ¼
2π

jk1 − k2jres
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δr > losc hence requires
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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convert to the spin-1 photon in the presence of the external
magnetic field perpendicular to the photon propagation,
and the interaction term in the Lagrangian for the electro-
magnetic field and the axion is

Lint ¼
1

4
gF̃ μνF μνa ¼ −gE ·Ba; ð2Þ

where g represents the axion-photon coupling with the
dimension ½mass%−1, E is the electric field associated with
the photon, and B is the transverse component (with respect
to the photon propagation) of the magnetic field.1 The
axion in our discussions, for the sake of brevity, refers to
the axion and more generally to the ALP as well defined by
this Lagrangian characterized by its mass and coupling to
the photon (we accordingly treat ma, g as independent
parameters).
LQED represents the quantum correction to the Maxwell

equation (due to the QED vacuum polarization), and it can
be given by the Euler-Heisenberg action whose leading
order term is [16,39]

LQED ¼ α2

90m4
e

7

4
ðF μν F̃ μνÞ2; ð3Þ

where α ¼ e2=4π is the fine-structure constant. The photon
obtains the effective mass in the magnetized plasma. The
contribution of the photon mass m2

γ ¼ Qpl −QQED comes
from the vacuum polarization

QQED ¼ 7α
45π

ω2 B 2

B 2
crit

; ð4Þ

with B crit ¼ m2
e=e ¼ 4.4 × 1013 G and the plasma mass

characterized by the plasma frequency ωpl,

Qplasma ¼ ω2
plasma ¼ 4πα

ne
me

; ð5Þ

with the charged plasma density ne. It has been pointed out
that the QED vacuum polarization effect spoils the reali-
zation of the adiabatic resonant conversion between the
relativistic axion (with the observable X-ray energy range)
and the photon in the vicinity of a neutron star with strong
magnetic fields [16,17]. We note here that the vacuum
polarization effect is not important compared with the
plasma effect for our axion CDM scenario. As a simple
estimation, adopting the Goldreich-Julian charge density
[40] for the plasma density,

nGJe ¼ 7 × 10−2
1s
P
B ðrÞ
1 G

1

cm3
; ð6Þ

where P is the neutron star spin period,

Qpl

QQED
∼ 5 × 108

!
μeV
ω

"
2 1012 G

B
1 sec
P

: ð7Þ

We can, hence, safely ignore QQED with respect to Qpl for
the parameter range of our interest because of a small
photon frequency ω relevant for the frequency range
sensitive to the radio telescopes in our CDM axion scenario
(ω ∼ma).
The equation for the axion-photon plane wave with a

frequency ω reads
#
ω2 þ ∂2

z þ
!−m2

γ gB ω

gB ω −m2
a

"$!
γ

a

"
¼ 0; ð8Þ

where we assumed for simplicity the time-independent
magnetic field B ðrÞ [16]. The mass matrix here can be
diagonalized by the rotation unitary matrix,

U ¼
!

cos θ̃ sin θ̃

− sin θ̃ cos θ̃

"
; ð9Þ

with

cos 2θ̃ ¼
m2

a −m2
γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4g2B 2ω2 þ ðm2
γ −m2

aÞ2
q

sin 2θ̃ ¼ 2gB ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2B 2ω2 þ ðm2

γ −m2
aÞ2

q ; ð10Þ

where the tilde represents the mixing angle in the medium
to be distinguished from that in the vacuum. The maximum
mixing can occur when m2

γðrÞ ≈ma. The mass eigenvalues
are

m2
1;2 ¼

ðm2
γ þm2

aÞ '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

γ −m2
aÞ2 þ 4g2B 2ω2

q

2
ð11Þ

with the corresponding momentum for the mass eigen-
states:

k21;2 ¼ ω2 −m2
1;2: ð12Þ

If the magnetic field is homogeneous, the conversion
probability for the axion into photon becomes

pa→γ ¼ sin2 2θ̃ðzÞ sin2½zðk1 − k2Þ=2% ð13Þ

for the wave dominated by the axion component at z ¼ 0.
This is analogous to the neutrino oscillations, and we can
interpret the axion-photon conversion in an analogous
manner. Even though the magnetic field is inhomogeneous
in the neutron star magnetosphere, the conversion in such a

1The photon here has a liner polarization parallel to the
external magnetic field. The other photon polarization state
and the photon mass term due to the Cotton-Mouton effect
(which can cause the birefringence) are of little importance in our
discussions and thus will be ignored [16,39].
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  Axion-photon conversion in magnetosphere

Here, we choose the simplest electron density distribution and magnetic field 
configuration to clearly see the physics process.  

Thus, the photon mass is position r dependent, and within some region the photon  
mass is close to the axion DM mass.

Here, for non-relativistic axion cold dark 
 matter,  the QED mass is negligible  

compared to plasma mass.



  The Adiabatic Resonant Conversion 

The resonance radius is defined at the level crossing point 
 

Within the resonance region, the axion-photon conversion  
rate is greatly enhanced due to large mixing angle.

nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,

B ðrÞ ¼ B 0

!
r
r0

"−3
; ð14Þ

and

m2
γðrÞ ¼ 4πα

neðrÞ
me

;

neðrÞ ¼ nGJe ðrÞ ¼ 7 × 10−2
1s
P
B ðrÞ
1 G

1

cm3
; ð15Þ

where r0 is the neutron star radius. The resonance radius is
defined at the level crossing point m2

γðrresÞ ¼ m2
a given by

!
rres
r0

"−3
≈ 10−3

!
ma

μeV

"
2
!
1014 G
B 0

"!
P

10 sec

"
: ð16Þ

At the resonance, jm2
γ −m2

aj ≪ gB ω andm2
1;2 ≈m2

a $ gB ω.
From the mixing angle given in Eq. (10),

sin 2θ̃ ¼
ð2gB ω=m2

γÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4g2B 2ω2=m4

γÞ þ ð1 − ðma=mγÞ2Þ2
q

≡ c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ð1 − fðrÞÞ2

p ; ð17Þ

where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
resonance,

losc ¼
2π

jk1 − k2jres
; ð19Þ

δr > losc hence requires

jd ln f=drj−1res > 650½m'
!
ma

μeV

"
3
!
vres
10−1

"!
1=1010 GeV

g

"
2

×
!
1012 G
B ðrresÞ

"
2
!
μeV
ω

"
2

: ð20Þ

The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,
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where r0 is the neutron star radius. The resonance radius is
defined at the level crossing point m2
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a given by
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At the resonance, jm2
γ −m2

aj ≪ gB ω andm2
1;2 ≈m2

a $ gB ω.
From the mixing angle given in Eq. (10),

sin 2θ̃ ¼
ð2gB ω=m2
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
resonance,

losc ¼
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jk1 − k2jres
; ð19Þ

δr > losc hence requires
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼
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ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for
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The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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dominated by the axion component can maximally mix
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the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density

RADIO TELESCOPE SEARCH FOR THE RESONANT … PHYS. REV. D 97, 123001 (2018)

123001-3

nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
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OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,
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At the resonance, jm2
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1;2 ≈m2

a $ gB ω.
From the mixing angle given in Eq. (10),
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.
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OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,
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At the resonance, jm2
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1;2 ≈m2
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From the mixing angle given in Eq. (10),
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for
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the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
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where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2
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We first examine the adiabatic condition for the sufficient
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requires that the region in which the resonance is approx-
imately valid inside the resonance width,
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The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is
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∼
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which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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nonuniform magnetic field can be studied analogously to
the MSWeffect for the neutrino oscillations in the spatially
varying matter background [41,42]. The wave initially
dominated by the axion component can maximally mix
with the photon in the resonance region in the presence of
the strong magnetic fields, and it gets adiabatically trans-
formed into the photon state, resulting in the photon-
dominated wave outside the magnetosphere.
We now more quantitatively discuss the conditions for

the adiabatic resonant conversion of the CDM axion into
photons.

III. THE ADIABATIC RESONANT CONVERSION
OF AXIONS INTO PHOTONS

The resonance can occur when the maximum mixing
angle is realized for m2

γðrÞ ≈m2
a. The photon mass or the

plasma mass depends on the plasma density. The realistic
modeling of the magnetosphere of a neutron star is beyond
the scope of this paper, and we simply assume a simple
dipole magnetic field with a magnitude at the neutron star
surface B 0 and the charged plasma density obeying the
Goldreich-Julian density,

B ðrÞ ¼ B 0

!
r
r0

"−3
; ð14Þ

and

m2
γðrÞ ¼ 4πα

neðrÞ
me

;

neðrÞ ¼ nGJe ðrÞ ¼ 7 × 10−2
1s
P
B ðrÞ
1 G

1

cm3
; ð15Þ

where r0 is the neutron star radius. The resonance radius is
defined at the level crossing point m2

γðrresÞ ¼ m2
a given by

!
rres
r0

"−3
≈ 10−3

!
ma

μeV

"
2
!
1014 G
B 0

"!
P

10 sec

"
: ð16Þ

At the resonance, jm2
γ −m2

aj ≪ gB ω andm2
1;2 ≈m2

a $ gB ω.
From the mixing angle given in Eq. (10),

sin 2θ̃ ¼
ð2gB ω=m2

γÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4g2B 2ω2=m4

γÞ þ ð1 − ðma=mγÞ2Þ2
q

≡ c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ð1 − fðrÞÞ2

p ; ð17Þ

where c1 is a constant independent of the radius, we can see
that the resonance occurs when fðrÞ≡ ðma=mγÞ2 ¼ 1 with
the resonance width Γ ¼ 2c1 ≡ 4gB ω=m2

γ .
We first examine the adiabatic condition for the sufficient

conversion of axions. The adiabatic resonant conversion
requires that the region in which the resonance is approx-
imately valid inside the resonance width,

δr ∼ δfjdf=drj−1res ∼ 2c1jdf=drj−1res; ð18Þ

is sufficiently bigger than the oscillation length scale at the
resonance,

losc ¼
2π

jk1 − k2jres
; ð19Þ

δr > losc hence requires

jd ln f=drj−1res > 650½m'
!
ma

μeV

"
3
!
vres
10−1

"!
1=1010 GeV

g

"
2

×
!
1012 G
B ðrresÞ

"
2
!
μeV
ω

"
2

: ð20Þ

The velocity at the resonance vres can be affected by the
gravitational acceleration near the neutron star and can be
much bigger than the characteristic CDM velocity in our
solar neighborhood v ∼ 10−3 (e.g., the escape velocity can
be of order v ∼Oð0.1Þ inside the magnetosphere of a
neutron star). This adiabaticity condition means the scale
relevant for the plasma density variation should be bigger
than the scale indicated on the right-hand side. The typical
scale for the magnetosphere (or the Alfven radius) is of
order 100r0 ∼Oð106Þm, and we can infer that this variation
length scale required for the adiabaticity can well be within
the neutron star magnetosphere. This condition is equiv-
alent to jdθ̃=drjres < l−1osc as readily checked by using
Eq. (10) and the resonance condition m2

γ ¼ m2
a. The

adiabatic condition hence assures us that the mixing angle
variation is slow enough assuming that the density variation
is sufficiently smooth so that the higher order terms do not
become significant.
For the axion-photon wave propagation in the magneto-

sphere, due to the existence of the plasma medium, we also
demand the coherence of the wave propagation for the
resonant conversion. This gives additional constraints
which do not show up for the analysis of the conventional
neutrino oscillations. The incoherent scatterings between
the converted photon and plasma medium, such as the
Thomson scatterings, can lose the coherence of the wave
propagation [16,17]. We demand that the photon mean free
path exceeds the oscillation length to prevent the photon
component of the beam from incoherently scattering with
the plasma. The Thomson scattering,

σ ¼ 8πα2=3m2
e; ð21Þ

and the mean free path is

1

σne
∼

107 km
ne=ð1012=cm3Þ

; ð22Þ

which exceeds all the relevant length scales of our
discussions (ne ∼ 1012=cm3 corresponds to the gas density
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N.B. Only for the non-relativistic 
axion, the resonant  

conversion can be achieved.  
For relativistic axion,  

QED effects make it impossible.

 Adiabatic resonant conversion is essential to observe 
the photon signal.



Line-like radio signal for non-relativistic axion 
conversion:  

⌫peak ⇡ ma

2⇡
⇡ 240

ma

µeV
MHz

The FAST covers 70 MHz–3 GHz, the SKA covers 50 MHz–
14 GHz, and the GBT covers 0.3–100 GHz, so that the radio 
telescopes can probe axion mass range of 0.2–400 µeV  

Radio Signal

1 GHz ~ 4 µeV

⌫ : 0.07 ! 100 GHz

ma : 0.2 ! 400 µeV



Signal:  For adiabatic resonant conversion, and the 
photon flux density can be estimated to be of order  

at the neutron star surface) and hence does not affect our
discussions.2 We also require the photon effective refractive
index to be real,

n21;2 ¼ 1 −
m2

1;2

ω2
¼

k21;2
ω2

> 0; ð23Þ

to avoid the loss of coherence in the axion-photon oscil-
lation and the attenuation of the wave propagation.

IV. THE PHOTON FLUX SEARCH BY
THE RADIO TELESCOPE

To estimate the photon flux, let us start by considering
the axion particle trajectory with the initial velocity v0 far
away from the neutron star in the Schwarzschild metric.
The impact parameter b, whose closest approach to the
neutron star is R, is given by

bðRÞ ¼ R
vescðRÞ
v0

ð1–2GM=RÞ−1=2; ð24Þ

where M is the neutron star mass and vesc ¼ ð2GM=RÞ1=2.
Recalling our discussion on the adiabatic resonance in

Sec. III (the efficient conversion can occur for m2
γðrresÞ ≈

m2
a with the resonance width Δm2

γ ≈ 4gBω), we can
estimate that the axion mass going through the efficient
axion-photon conversion region is of order [45–48]

dma

dt
∼πðb2ðrþ Þ−b2ðr−ÞÞρav0∼

8π
3
rresGMv−10 ρagBωm−2

a ;

ð25Þ

where ρa is the axion CDM density and we used gBω < m2
a

for the parameter range of our interest. r% is defined by
m2

γðr% Þ ¼ m2
a ∓ Δm2

γ=2, and we, for a conservative esti-
mation, do not count the axions going through r < r− to
avoid the wave attenuation. The photon energy from the
axion-photon conversion is

dE
dt

¼ pa→γ
dma

dt
ð26Þ

where the conversion probability p can be close to unity for
the adiabatic resonant conversion, and the photon flux
density can be estimated to be of order

Sγ ¼
dE=dt
4πd2Δν

∼ 4.2μJy
ð rres
100 kmÞð

M
Msun

Þð ρa
0.3 GeV=cm3Þð10

−3

v0
Þð g

1=1010 GeVÞð
BðrresÞ
1012 GÞð

ω
μeVÞð

μeV
ma

Þ2

ð d
1 kpcÞ

2ðma=2π
μeV=2πÞð

vdis
10−3

Þ;
ð27Þ

where d represents the distance from the neutron star to us.
The photon flux peaks around the frequency νpeak ∼ma=2π,
and Δν ∼ νpeakvdis represents the spectral line broadening
around this peak frequency due to the DM velocity
dispersion vdis.
We are interested in the detectability of this photon flux

as a result of the axion-photon resonant conversion by a
radio telescope. For this purpose, one can consider the
antenna temperature induced by the total flux density S,

T ¼ 1

2
AeffS; ð28Þ

where Aeff represents the effective collecting area of the
telescope [49]. The minimum detectable brightness temper-
ature (sensitivity) can be given by the root mean square
noise temperature of the system (which consists of the
added sky/instrumental noises of the system)

Tmin ≈
Tsysffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔBtobs

p ; ð29Þ

where ΔB is the bandwidth and tobs is the integrated
observation time. We can hence estimate, from Eqs. (28)
and (29), that the smallest detectable flux density is of order

Smin≈0.29μJy
"
1GHz
ΔB

#
1=2

"
24 hrs
tobs

#
1=2

"
103 m2=K
Aeff=Tsys

#

ð30Þ

to be compared with the photon flux from the axion
conversion given by Eq. (27). Aeff=Tsys differs for different
experiment specifications. For instance, the SKA-mid in
the Phase 1 (SKA1) will be able to provide Aeff=Tsys ∼
2.7 × 103 assuming Aeff ∼ ð180 mÞ2 and Tsys ∼ 12 K, and
it would increase by more than an order of magnitude
assuming Aeff ∼ ð1 kmÞ2 in the Phase 2 (SKA2) [50].
There still exists a wide range of axion parameter space

of ma, g which still has not been explored, and the radio
telescope can complement the other experiments to fill in
the gap of those unexplored parameter spaces. For instance
the FAST (Five Hundred Meter Aperture Spherical Radio
Telescope) covers 70 MHz–3 GHz, the SKA (Square
Kilometre Array) covers 50 MHz–14 GHz, and the GBT
(Green Bank Telescope) covers 0.3–100 GHz, so that the
radio telescopes can probe the axion mass range of

2The strong magnetic fields can possibly affect the Thomson
scattering cross section, which however does not lead to the
violation of this coherence condition for the parameter range of
our interest [43,44].
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at the neutron star surface) and hence does not affect our
discussions.2 We also require the photon effective refractive
index to be real,

n21;2 ¼ 1 −
m2

1;2

ω2
¼

k21;2
ω2

> 0; ð23Þ

to avoid the loss of coherence in the axion-photon oscil-
lation and the attenuation of the wave propagation.

IV. THE PHOTON FLUX SEARCH BY
THE RADIO TELESCOPE

To estimate the photon flux, let us start by considering
the axion particle trajectory with the initial velocity v0 far
away from the neutron star in the Schwarzschild metric.
The impact parameter b, whose closest approach to the
neutron star is R, is given by

bðRÞ ¼ R
vescðRÞ
v0

ð1–2GM=RÞ−1=2; ð24Þ

where M is the neutron star mass and vesc ¼ ð2GM=RÞ1=2.
Recalling our discussion on the adiabatic resonance in

Sec. III (the efficient conversion can occur for m2
γðrresÞ ≈

m2
a with the resonance width Δm2

γ ≈ 4gBω), we can
estimate that the axion mass going through the efficient
axion-photon conversion region is of order [45–48]

dma

dt
∼πðb2ðrþ Þ−b2ðr−ÞÞρav0∼

8π
3
rresGMv−10 ρagBωm−2

a ;

ð25Þ

where ρa is the axion CDM density and we used gBω < m2
a

for the parameter range of our interest. r% is defined by
m2

γðr% Þ ¼ m2
a ∓ Δm2

γ=2, and we, for a conservative esti-
mation, do not count the axions going through r < r− to
avoid the wave attenuation. The photon energy from the
axion-photon conversion is

dE
dt

¼ pa→γ
dma

dt
ð26Þ

where the conversion probability p can be close to unity for
the adiabatic resonant conversion, and the photon flux
density can be estimated to be of order

Sγ ¼
dE=dt
4πd2Δν

∼ 4.2μJy
ð rres
100 kmÞð

M
Msun

Þð ρa
0.3 GeV=cm3Þð10

−3

v0
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BðrresÞ
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ω
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μeV
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Þ2

ð d
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2ðma=2π
μeV=2πÞð

vdis
10−3

Þ;
ð27Þ

where d represents the distance from the neutron star to us.
The photon flux peaks around the frequency νpeak ∼ma=2π,
and Δν ∼ νpeakvdis represents the spectral line broadening
around this peak frequency due to the DM velocity
dispersion vdis.
We are interested in the detectability of this photon flux

as a result of the axion-photon resonant conversion by a
radio telescope. For this purpose, one can consider the
antenna temperature induced by the total flux density S,

T ¼ 1

2
AeffS; ð28Þ

where Aeff represents the effective collecting area of the
telescope [49]. The minimum detectable brightness temper-
ature (sensitivity) can be given by the root mean square
noise temperature of the system (which consists of the
added sky/instrumental noises of the system)

Tmin ≈
Tsysffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔBtobs

p ; ð29Þ

where ΔB is the bandwidth and tobs is the integrated
observation time. We can hence estimate, from Eqs. (28)
and (29), that the smallest detectable flux density is of order

Smin≈0.29μJy
"
1GHz
ΔB

#
1=2

"
24 hrs
tobs

#
1=2

"
103 m2=K
Aeff=Tsys

#

ð30Þ

to be compared with the photon flux from the axion
conversion given by Eq. (27). Aeff=Tsys differs for different
experiment specifications. For instance, the SKA-mid in
the Phase 1 (SKA1) will be able to provide Aeff=Tsys ∼
2.7 × 103 assuming Aeff ∼ ð180 mÞ2 and Tsys ∼ 12 K, and
it would increase by more than an order of magnitude
assuming Aeff ∼ ð1 kmÞ2 in the Phase 2 (SKA2) [50].
There still exists a wide range of axion parameter space

of ma, g which still has not been explored, and the radio
telescope can complement the other experiments to fill in
the gap of those unexplored parameter spaces. For instance
the FAST (Five Hundred Meter Aperture Spherical Radio
Telescope) covers 70 MHz–3 GHz, the SKA (Square
Kilometre Array) covers 50 MHz–14 GHz, and the GBT
(Green Bank Telescope) covers 0.3–100 GHz, so that the
radio telescopes can probe the axion mass range of

2The strong magnetic fields can possibly affect the Thomson
scattering cross section, which however does not lead to the
violation of this coherence condition for the parameter range of
our interest [43,44].
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Sensitivity:  The smallest detectable flux density of 
the radio telescope (SKA, FAST, GBT)  is of order  

at the neutron star surface) and hence does not affect our
discussions.2 We also require the photon effective refractive
index to be real,

n21;2 ¼ 1 −
m2

1;2

ω2
¼

k21;2
ω2

> 0; ð23Þ

to avoid the loss of coherence in the axion-photon oscil-
lation and the attenuation of the wave propagation.

IV. THE PHOTON FLUX SEARCH BY
THE RADIO TELESCOPE

To estimate the photon flux, let us start by considering
the axion particle trajectory with the initial velocity v0 far
away from the neutron star in the Schwarzschild metric.
The impact parameter b, whose closest approach to the
neutron star is R, is given by

bðRÞ ¼ R
vescðRÞ
v0

ð1–2GM=RÞ−1=2; ð24Þ

where M is the neutron star mass and vesc ¼ ð2GM=RÞ1=2.
Recalling our discussion on the adiabatic resonance in

Sec. III (the efficient conversion can occur for m2
γðrresÞ ≈

m2
a with the resonance width Δm2

γ ≈ 4gBω), we can
estimate that the axion mass going through the efficient
axion-photon conversion region is of order [45–48]

dma

dt
∼πðb2ðrþ Þ−b2ðr−ÞÞρav0∼

8π
3
rresGMv−10 ρagBωm−2

a ;

ð25Þ

where ρa is the axion CDM density and we used gBω < m2
a

for the parameter range of our interest. r% is defined by
m2

γðr% Þ ¼ m2
a ∓ Δm2

γ=2, and we, for a conservative esti-
mation, do not count the axions going through r < r− to
avoid the wave attenuation. The photon energy from the
axion-photon conversion is

dE
dt

¼ pa→γ
dma

dt
ð26Þ

where the conversion probability p can be close to unity for
the adiabatic resonant conversion, and the photon flux
density can be estimated to be of order

Sγ ¼
dE=dt
4πd2Δν

∼ 4.2μJy
ð rres
100 kmÞð

M
Msun

Þð ρa
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where d represents the distance from the neutron star to us.
The photon flux peaks around the frequency νpeak ∼ma=2π,
and Δν ∼ νpeakvdis represents the spectral line broadening
around this peak frequency due to the DM velocity
dispersion vdis.
We are interested in the detectability of this photon flux

as a result of the axion-photon resonant conversion by a
radio telescope. For this purpose, one can consider the
antenna temperature induced by the total flux density S,

T ¼ 1

2
AeffS; ð28Þ

where Aeff represents the effective collecting area of the
telescope [49]. The minimum detectable brightness temper-
ature (sensitivity) can be given by the root mean square
noise temperature of the system (which consists of the
added sky/instrumental noises of the system)

Tmin ≈
Tsysffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔBtobs

p ; ð29Þ

where ΔB is the bandwidth and tobs is the integrated
observation time. We can hence estimate, from Eqs. (28)
and (29), that the smallest detectable flux density is of order

Smin≈0.29μJy
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1=2
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to be compared with the photon flux from the axion
conversion given by Eq. (27). Aeff=Tsys differs for different
experiment specifications. For instance, the SKA-mid in
the Phase 1 (SKA1) will be able to provide Aeff=Tsys ∼
2.7 × 103 assuming Aeff ∼ ð180 mÞ2 and Tsys ∼ 12 K, and
it would increase by more than an order of magnitude
assuming Aeff ∼ ð1 kmÞ2 in the Phase 2 (SKA2) [50].
There still exists a wide range of axion parameter space

of ma, g which still has not been explored, and the radio
telescope can complement the other experiments to fill in
the gap of those unexplored parameter spaces. For instance
the FAST (Five Hundred Meter Aperture Spherical Radio
Telescope) covers 70 MHz–3 GHz, the SKA (Square
Kilometre Array) covers 50 MHz–14 GHz, and the GBT
(Green Bank Telescope) covers 0.3–100 GHz, so that the
radio telescopes can probe the axion mass range of

2The strong magnetic fields can possibly affect the Thomson
scattering cross section, which however does not lead to the
violation of this coherence condition for the parameter range of
our interest [43,44].
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Radio Signal



Signal: For a trial parameter set,  

satisfies the constraints of the adiabatic resonance 
conditions and the existed axion search constraints 
produces the signal Sγ ∼0.51 µJy.  

Sensitivity:  

SKA-like experiment can probe the axion DM and the axion 
mass which corresponds to peak frequency. 
More detailed study taking into account astrophysical 
uncertainties and more precise numerical analysis is still 
working in progress.

0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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0.2–400 μeV [50–52]. The current axion search experi-
mental upper bounds on the axion-photon coupling corre-
sponding to this radio telescope frequency range are
g < 6.6× 10−11 GeV−1, which comes from the helioscope
experiment and also from the energy loss rate enhancement
of the horizontal branch stars of global clusters through the
Primakoff effect [23,53]. The haloscope (microwave cav-
ity) experiments give even tighter bounds for some limited
axion mass ranges. For instance, g≲ 10−15 GeV−1 for the
axion mass of 2–3.5 μeV and g≲ 10−13GeV−1 for the
axion mass of 4.5–10 μeV [19,21,22,24,54]. The exclusive
parameter search for our study on the radio telescope probe
for axions is beyond the scope of this paper partly because
of the astrophysical uncertainties in the magnetosphere
modeling and a wide range of the possible parameters for
the neutron stars (e.g., the spin period can vary in a wide
range (Oð10−3–103Þ sec) and the magnetic field can reach
up to 1015 G) [55–63]). Dark matter properties such as the
dark matter velocity dispersion in the neighborhood of a
neutron star remain to be clarified too. The dark matter
density in the vicinity of a neutron star does not have to be
same as that in the solar neighborhood ρa ∼ 0.3GeV=cm3.
For instance, in the region where the neutron star
distribution peaks in our galaxy (∼ a few kpc from the
galactic center), the density can well be enhanced by more
than an order of magnitude (e.g., ρa ∼Oð10–100Þ×
0.3GeV=cm3) and could be even bigger ρa ∼Oð104Þ ×
0.3GeV=cm3 around the neutron star found near the
galactic center due to a dark matter spike [64–70].
For a trial parameter set, let us adopt the DM velocity and

the dispersion velocity of order v0 ∼ vdis ∼ 10−3and a factor
10 enhancement of the local DM density compared with the
value near the earth ρa ∼3GeV=cm3. Let us also assume a
neutron star of order a kpc away from us and take the DM
velocity in the resonance region of order the escape velocity
at the resonance radius. Then, for our toy magnetosphere
model with a simple dipole magnetic field profile [Eqs. (14)
and (15)], a parameter set (B 0 ¼ 1015 G, ma ¼ 50 μeV,
P¼ 10 s, g ¼ 5 × 10−11 GeV−1, r0 ¼ 10 km, M ¼
1.5Msun) satisfies the conditions for the adiabatic resonance
conditions with Sγ ∼ 0.51μJy. This can exceed the estimated
minimum required flux Smin ∼ 0.48μJy for the SKA1 and
Smin ∼ 0.016Jy for the SKA2 with 100 hour observation
time, wherewe assumed the optimized band width matching
the signal width ΔB ¼ Δν. This simple parameter set
examplewouldwork as an existence proof for themotivation
to seek a potential radio telescope probe of the adiabatic
resonant conversion of axions. Even though the further
parameter search with more detailed astrophysical model
setups is left for future work, we have a few comments
regarding the astrophysical uncertainties involved in our
estimation before concluding our work. The measurements
of the neutron star radiation in the different wavebands
have been fitted well by assuming a magnetic field profile
more complicated than a simple vacuum dipole profile

(e.g., twisted magnetosphere) and a plasma charge density
larger (e.g., a few orders of magnitude larger) than the
classical Goldreich-Julian value [62,71–77]. Such an
enhancement in the plasma density would increase the
resonance radius and affect the adiabaticity condition and
the photon flux estimation. In addition to the DM velocities
and velocity dispersions which can affect our photon flux
estimation, the galactic drift velocities of neutron stars are
also uncertain parameters whose velocity distribution does
not follow a simple Gaussian-like distribution and spans in a
wide range (typically Oð100–500Þ km=s with a significant
fraction (∼Oð10Þ%) of theneutron star populationhaving the
velocity exceeding 1000 km=s) [78]. Such variations in the
relative velocity between a neutron star and the axions can
affect the photon flux estimation too. A more detailed study
taking into account such astrophysical uncertainties and the
numerical analysis for our adiabatic resonance conversion
scenario along with the extension of our scenario to the one
including the nonadiabatic axion-photon conversion are left
for our future work.
Let us here also briefly comment on the comparison of our

scenario with the other relevant works. The conditions of the
complete conversion of axions into photons were first
studied in [17], which considered the relativistic axions
with the X-ray energy range, in contrast to the radio range in
our scenario, and hence could not realize the sufficient
adiabaticity due to the QED effect. Our CDM axion scenario
is also in contrast to the resonant conversion scenarios where
only the partial axion-photon conversion, hence with a
smaller conversion probability compared with the complete
conversion scenarios, occurs due to the insufficient adiaba-
ticity and/or coherence. Such a partial conversion scenario
would relax the bounds on the model parameters and would
be applicable for a larger sample of the neutron stars, but one
needs to require some way to compensate a smaller con-
version probability to detect the axion signals by the radio
telescopes such as a large dark matter density near the
neutron star (e.g., the dark matter density enhancement
factor of Oð1010Þ with respect to the local density in the
solar neighborhood [79]).3 How the model parameters are
affected by the astrophysical uncertainties would differ
depending on the scenarios too. For instance, for the partial
conversion scenarios, a smaller g would become viable if we
allow a bigger DM density enhancement because a bigger
dark matter density (to which the photon flux is proportional)
could compensate for a smaller conversion probability. On
the other hand, for the complete conversion scenario, in

3Reference [79] assumes the signal bandwidth broadening of
order the DM velocity squared, in contrast to ours and the other
literature which take account of a more dominant line width linear
in the velocity (e.g., from the Doppler broadening effect). This
can result in the overestimation of the signal flux by three to four
orders of magnitude and we quoted here the required dark matter
density enhancement factor bigger than their adopted value
taking account of this correction.
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1. Astrophysical uncertainties:the magnetic profile, DM 
density and distribution, the velocity dispersion, the plasma 
mass, background including optimized bandwidth 
2. There are more and more detailed and comprehensive 
studies after our first rough estimation on the radio signal: 

  Comments on the radio probe of axion dark DM 

   arXiv:1804.03145 by Anson Hook, Yonatan Kahn, Benjamin R. Safdi, Zhiquan Sun 
where they consider more details. They also consider  extremely high DM  

density around the neutron star, thus the signal is more stronger.
arXiv:1811.01020 by Benjamin R. Safdi, Zhiquan Sun, Alexander Y. Chen 
arXiv:1905.04686,Thomas, D.P.Edwards,Marco Chianese, Bradley J. Kavanagh,  

   Samaya M. Nissanke, Christoph Weniger, where they consider multi-messenger of   
    axion DM detection. Namely, using LISA to detect the DM density 

   around the neutron star, which can determine the radio strength detected by SKA.

3. Recently, GBT already have some data on the observation of neutron star, 
 and  Safdi’s group is doing the analysis of the data to get some constraints. 

4. More precise study are needed …



  Comments on the radio probe of axion DM 
   arXiv:1804.03145 by Anson Hook, Yonatan Kahn, Benjamin R. Safdi, Zhiquan Sun 

where they consider more details.  
Besides the normal DM density, they also consider the extremely high DM density around  

the neutron star, thus the signal is more stronger.
arXiv:1811.01020 by Benjamin R. Safdi, Zhiquan Sun, Alexander Y. Chen 



Multi-Messenger Signal of QCD Axion DM 

This work is a  combination 
of two classes of well-studied  

works: 
1. radio signal search of the 

axion DM by SKA-like 
experiments 

3. gravitational wave 
detection of DM density 

by LISA-like experiments.

These two different works are 
combined as multi-messenger 
signals through the extremely 
high DM density surrounded 

the intermediate massive 
black hole and neutron star 

binary. 

arXiv:1905.04686,Thomas, D.P.Edwards,Marco Chianese, Bradley J. Kavanagh,  
   Samaya M. Nissanke, Christoph Weniger





Recently, people realise that light dark photon can be a 
promising DM candidate.  
We study how to detect this dark photon DM by radio 
telescope, like SKA following the same idea as the axion  
DM case. 
We can obtain the strongest constraints. 

 Generalisation to dark photon DM case 
   arXiv:1908.xxxxx by Haipeng An, FPH, Jia Liu, and Wei Xue  



 Generalisation to dark photon DM case 
   arXiv:1908.xxxxx by Haipeng An, FPH, Jia Liu, and Wei Xue  

Preliminary constraints from SKA phase 1



We study a simple model for the successful DM and EW 
baryogenesis with dynamical CP-violating source. 
Based on arXiv:1905.10283, Phys. Rev. D100, 035014 
(2019)FPH, Eibun Senaha  
and work in progress with Eibun Senaha 1908.xxxxx 
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1 Model

We consider an extended inert doublet model (ExIDM) [1] and discuss its phenomenology. The
particle content is the SM plus a vector-like lepton (Ei), RH-neutrino (NiR) and inert Higgs
doublet (η). Their SM quantum numbers and the Z2 charge are assigned as follows.

Ei : (1,1,−1,−), NiR : (1,1, 0,−), η : (1,2, 1/2,−). (1.1)

The gauge interactions of Ei are

LE = Ēiiγ
µDµEi = Ēiiγ

µ(∂µ − ig1Bµ)Ei

= Ēiiγ
µ∂µEi − etW Ēiγ

µEiZµ + eĒiγ
µEiAµ, (1.2)

where tW = sW/cW with sW ≡ sin θW etc.
The kinetic term of the inert Higgs fields is

Lkin ∋ (Dµη)
†Dµη (1.3)

where

Dµ = ∂µ + ig2
τa

2
Aa

µ(x) + ig1
1

2
Bµ(x). (1.4)

The new lepton Yukawa interaction is

−LY ∋ yij ℓ̄iLηEjR +mEiĒiLEiR + h.c.

=
1√
2
ēLyER(H + iA) + ν̄LyERH

+ +mEiĒiLEiR + h.c.

=
1√
2
ēLyER(H + iA) +

1√
2
ĒRy

†eL(H − iA) + ν̄LyERH
+ + ĒRy

†νLH
− +mEiĒiEi,

(1.5)

where mE has the diagonal form without loss of generality.

∗Since April 18, 2018.
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The scalar potential is given by

V0(Φ, η) = µ2
1Φ

†Φ+ µ2
2η

†η +
λ1

2
(Φ†Φ)2 +

λ2

2
(η†η)2 + λ3(Φ

†Φ)(η†η)

+ λ4(Φ
†η)(η†Φ) +

[
λ5

2
(Φ†η)2 + h.c

]
, (1.6)

where

Φ =

(
G+

1√
2
(v + h+ iG0)

)
, η = eiθ0

(
H+

1√
2
(vη +H + iA)

)
. (1.7)

Note that even though vη and θ0 are assumed to be zero at T = 0, they could be nonzero at
T > 0.

A tadpole condition at tree level is

Th =

〈
∂V0

∂h

〉
= v

(
µ2
1 +

1

2
λ1v

2

)
= 0. (1.8)

The tree-level Higgs masses are

m2
h = µ2

1 +
3

2
λ1v

2 = λ1v
2, (1.9)

m2
G0 = m2

G± = µ2
1 +

λ1

2
v2 = 0, (1.10)

m2
H = µ2

2 +
1

2
(λ3 + λ4 + λ5)v

2, (1.11)

m2
A = µ2

2 +
1

2
(λ3 + λ4 − λ5)v

2, (1.12)

m2
H± = µ2

2 +
1

2
λ3v

2. (1.13)

1.1 Input parameters

Original parameters: µ2
1, µ2

2, λ1, λ2, λ3, λ4, λ5. (1.14)

Converted parameters: µ2
2, λ2, mh, mH , mA, mH± , (1.15)

where

λ1 =
m2

h

v2
, (1.16)

λ3 =
2

v2
(m2

H± − µ2
2), (1.17)

λ4 =
1

v2
(m2

H +m2
A − 2m2

H±), (1.18)

λ5 =
1

v2
(m2

H −m2
A). (1.19)

For mA = mH±

λ1 =
m2

h

v2
, λ3 =

2

v2
(m2

H± − µ2
2), (1.20)

2

The SM augmented by an inert Higgs doublet, right-handed  
neutrinos and vector-like leptons has been studied from the  
viewpoints of DM and neutrino physics, or DM and  
(g − 2)µ anomaly, or DM and inflation 

II.Typical scalar DM: 
Explore the scalar DM and baryogenesis 



EW baryogenesis in a nutshell

A long standing problem in  particle 
cosmology is the origin of baryon 
asymmetry of the universe (BAU).

(CMB, BBN) 

After the discovery of the Higgs 
boson by LHC and gravitational 

waves (GW) by aLIGO,  EW 
baryogenesis becomes a timely and 
testable scenario for explaining the 

BAU.

I. INTRODUCTION

Electroweak (EW) baryogenesis becomes a promising and testable mechanism at both

particle colliders and gravitational wave (GW) detectors to explain the observed baryon

asymmetry of the Universe (BAU), especially after the discovery of the 125 GeV Higgs

boson at the LHC [1, 2] and the first detection of GWs by Advanced LIGO [3]. The long-

standing puzzle of BAU in particle cosmology is quantified by the baryon-to-photon ratio

⌘B = nB/n� = 5.8�6.6⇥10�10 [4] at 95% confidence level (C.L.), which is determined from

the data of the cosmic microwave background radiation or the big bang nucleosynthesis. It is

well known that to generate the observed BAU, Sakharov’s three conditions (baryon number

violation, C and CP violation, and departure from thermal equilibrium or CPT violation) [5]

need to be satisfied, and various baryogenesis mechanisms have been proposed [6]. Among

them, EW baryogenesis [7–9] may potentially relate the nature of the Higgs boson and phase

transition GWs. An important ingredient for successful EW baryogenesis is the existence

of a strong first-order phase transition (SFOPT) which can achieve departure from thermal

equilibrium. The lattice simulation shows that the 125 GeV Higgs boson is too heavy

for an e�cient SFOPT [9], nevertheless, there exist already in the literature four types of

extensions of the standard model (SM) Higgs sector to produce a SFOPT [10]. Another

important ingredient is su�cient source of CP violation, which is too weak in the SM.

One needs to introduce a large enough CP violation, which also needs to escape the severe

constraints from the electric dipole moment (EDM) measurement.

Thus, in this work, we study the dynamic source of CP violation1, which depends on the

cosmological evolution of a scalar field. For example, this can be realized by the two-step

phase transition, where a su�cient CP violation and SFOPT can be satisfied simultaneously

to make the EW baryogenesis work. The studied scenario could explain the observed BAU

while satisfying all the constraints from EDM measurement and collider data.

As a well-studied example, the SM is extended with a real scalar field S and a dimension-

five operator yt
⌘

⇤SQ̄L�̃tR + H.c. to provide the SFOPT and su�cient CP violation for

EW baryogenesis, which was firstly proposed in Refs. [15, 16]. This dimension-five operator

actually appears in many composite models and this source of CP violation for BAU evolves

1 In recent years, inspiring works on the dynamical CP violation appeared in Refs. [11–14].

2

from google
See Chang Sub Shin’s lectures for more details.



 
EW baryogenesis:  
SM technically  
 has all the three  
elements for 
baryogenesis ,  
(Baryon violation,  
 C and CP violation, 
 Departure from  
thermal equilibrium  
or CPT violation)  
but not  enough.

➢ B violation from anomaly in B+L 
current. 

➢ CKM matrix, but too weak. 
➢ strong first-order phase transition 

(SFOPT) with expanding Higgs 
Bubble wall. 

D. E. Morrissey and M. J. Ramsey-Musolf,  
New J. Phys. 14, 125003 (2012).



Strong first-order phase 
transition for mH < 75 GeV Cross over  for mH > 75 GeV

Extension of the Higgs sector can easily produce strong first-order 
phase transition even for 125 GeV Higgs boson motivated from EW 
baryogenesis, dark matter or other new physics

From lattice 
simulation

SFOPT in extended Higgs sector motivated 
 by baryogenesis, dark matter or other new physics



Phase transition GW as a by-product  
of EW baryogenesis  

E. Witten, Phys. Rev. D 
30, 272 (1984) 
C. J. Hogan, Phys. Lett. B 
133, 172 (1983);  
M. Kamionkowski, A. 
Kosowsky and M. S. 
Turner, Phys. Rev. D 49, 
2837 (1994)) 
EW phase transition 
GW becomes more 
interesting and 
realistic after the 
discovery of  
Higgs by LHC and 
GW    by LIGO.

SFOPT can drive the plasma of the early 
universe out of thermal equilibrium, and 
bubbles nucleate during it, which will produce  
gravitational waves (GW).



➢Bubble collision: well-known source from 1983 

➢Turbulence in the plasma fluid: a fraction 
of the bubble wall energy  converted into turbulence. 

➢Sound wave in the plasma fluid: after 
the collision, a fraction of bubble wall energy converted 
into motion of the fluid (and is only later dissipated). 
New mechanism of GW：sound wave  

      Mark Hindmarsh, et al., PRL 112, 041301 (2014); 

Mechanisms of GW from phase 
transition



How to alleviate this tension for successful baryogenesis?

Large enough  
CP-violating source 

for successful  
EW baryogenesis 

pretty small  
CP-violation  

to avoid strong EDM  
constraints

Strong tension in most cases

Current EDM data put severe constraints on many baryogenesis 
models. For example, ACME Collaboration’s new result, i.e.  

|de| < 1.1× 10−29 cm · e at 90% C.L. (Nature vol.562,357,18th Oct.2018) 
, has ruled out a large portion of the CP-violating parameter space for 
many baryogenesis models. 

Sufficient CP-violation for baryogenesis v.s. 
electric dipole moment (EDM) measurement

• contribution to electron EDM

top-quark loop. Considering the one-loop correction, the
(squared) mass matrix terms of the scalar fields can be
written as

Lmass ¼ −
1

2

!
S H

"! m 2
S;tree þ Δm 2

S Δm 2
HS

Δm 2
HS m 2

H;tree þ Δm 2
H

"

×
!

S

H

"
: ð18Þ

Those corrections are

Δm 2
H ¼ 3m 4

t

4π2v2
; Δm 2

HS ¼ a
3m 4

t

2π2Λv
;

Δm 2
S ¼ ða2 − b2Þ 3m 4

t

4π2Λ2
: ð19Þ

The calculation details can also be found in the Appendix.
This mass matrix can be diagonalized by a rotation
matrix O:

O
! m 2

S;tree þ Δm 2
S Δm 2

HS

Δm 2
HS m 2

H;tree þ Δm 2
H

"
OT

¼
!m 2

S;phy 0

0 m 2
H;phy

"
: ð20Þ

Here m H;phy ¼ 125 GeV is the mass of the SM-like Higgs
boson observed by the LHC, and the physical mass
eigenstates are the mixing of the scalar fields H and S:

Sphy ¼ O11SþO12H;

Hphy ¼ O21SþO22H: ð21Þ

From now on, we neglect the subscript “phy,” and all the
fields and masses are physical by default.

A. Electric dipole moment experiments

Current EDM experiments put severe constraints on
many baryogenesis models. For example, the ACME
Collaboration’s new result, i.e., jdej< 8.7 × 10−29 cm · e
at 90% C.L. [68], has ruled out a large portion of the CP
violation parameter space for many baryogenesis models.
However, in this dynamical CP violation baryogenesis
scenario, the strong constraints from the recent electron
EDM experiments can be greatly relaxed, since S does not
acquire a VEV at zero temperature; thus, the mixing of S
and the Higgs boson and the CP violation interaction of the
top Yukawa is prevented at the tree level; i.e., the two-loop
Barr-Zee contributions to the EDM come only from the
loop-induced mixing effects. For example, if one considers
hSi ¼ 100 GeV, then current electron EDM measurements
can exclude the parameter space with Λ < 10 TeV [69].
This difference can be analytically understood by loop

order estimation. In those models with hSi ≠ 0, the CP
violation term contributes to electron EDM through the
Barr-Zee diagram at the two-loop level. While in our case
with hSi ¼ 0, this CP violation term can contribute to
EDM only at the three-loop level, because the mixing of H
and S is induced at the one-loop level. Thus, in our case the
constraints from the EDM are weaker than the collider
constraints (discussed in the next section), which is differ-
ent from the usual EW baryogenesis case where the EDM
constraints are much stronger than the collide constraints.
Because of the loop-induced mixing effects, the two-loop
Barr-Zee contribution to EDM is suppressed and can be
expressed as [69–71]

d2-loope ¼ e
3π2

!
αEWGFvffiffiffi

2
p

πm t

"
m e

!
vb
2Λ

"

×O11O12½−gðztsÞ þ gðzthÞ&; ð22Þ

with

zts ¼
m 2

t

m 2
S
; zth ¼

m 2
t

m 2
H
;

gðzÞ ¼ 1

2
z
Z

1

0
dx

1

xð1 − xÞ − z
log

!
xð1 − xÞ

z

"
: ð23Þ

The numerical results are shown in Fig. 3, where the
region below the dotted blue lines is excluded by the EDM
experiments.
We also consider constraints from neutron EDM [72–74]

and mercury EDM [75,76]. But, through our calculation,
we find that limits from current neutron and mercury EDM
experiments are weaker than electron EDM. However, the
expected future neutron EDM measurement [77] with a
much enhanced precision could have the capability to
detect this type of CP violation.

B. Collider direct search and Higgs data

Production and decay patterns of both the Higgs boson
and S particle are modified by the loop-induced mixing;
see Fig. 2 for an illustration. In Fig. 2, the mass gap around
125 GeV comes from the mass mixing term Δm 2

HS ¼
a 3m 4

t
2π2Λv, which is fixed by Λ rather than a free parameter.

This feature is shown more clearly in Fig. 3, where the mass
region between black dashed lines is forbidden by this
mass mixing term. Fortran code EHDECAY [78–81] is used
here to do precise calculations. Figure 2 shows that the
branching ratios of S is quite SM-like near the Higgs mass
due to a large mixing with H. While in the region away
from 125 GeV, i.e., the region with a smaller mixing, top-
loop-induced γγ and gg channels are enhanced. Our
scenario get constraints from the SM and non-SM Higgs
searches in various channels at LEP, Tevatron, and LHC
experiments and the observed 125 GeV Higgs signal

HUANG, QIAN, and ZHANG PHYS. REV. D 98, 015014 (2018)

015014-6

(ACME 2014)

EDM and Collider Analysis

[56] M. Quiros, hep-ph/9901312.

[57] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Strumia,

JHEP 1312, 089 (2013) doi:10.1007/JHEP12(2013)089 [arXiv:1307.3536 [hep-ph]].

[58] C. Grojean and G. Servant, Phys. Rev. D 75, 043507 (2007).

[59] J. M. Cline, G. D. Moore and G. Servant, Phys. Rev. D 60, 105035 (1999)

doi:10.1103/PhysRevD.60.105035 [hep-ph/9902220].

[60] S. Profumo, L. Ubaldi and C. Wainwright, Phys. Rev. D 82, 123514 (2010)

doi:10.1103/PhysRevD.82.123514 [arXiv:1009.5377 [hep-ph]].

[61] C. L. Wainwright, Comput. Phys. Commun. 183, 2006 (2012) doi:10.1016/j.cpc.2012.04.004

[arXiv:1109.4189 [hep-ph]].

[62] L. Fromme and S. J. Huber, JHEP 0703, 049 (2007) doi:10.1088/1126-6708/2007/03/049

[hep-ph/0604159].

[63] J. M. Cline, K. Kainulainen and M. Trott, JHEP 1111, 089 (2011)

doi:10.1007/JHEP11(2011)089 [arXiv:1107.3559 [hep-ph]].

[64] A. Kobakhidze, L. Wu and J. Yue, JHEP 1604, 011 (2016) doi:10.1007/JHEP04(2016)011

[arXiv:1512.08922 [hep-ph]].

[65] O. Cheyette, Nucl. Phys. B 297, 183 (1988).

[66] B. Henning, X. Lu and H. Murayama, JHEP 1601, 023 (2016) [arXiv:1412.1837 [hep-ph]].

[67] M. K. Gaillard, Nucl. Phys. B 268, 669 (1986).

[68] J. Baron et al. [ACME Collaboration], Science 343, 269 (2014) doi:10.1126/science.1248213

[arXiv:1310.7534 [physics.atom-ph]].

[69] J. Brod, U. Haisch and J. Zupan, JHEP 1311, 180 (2013) doi:10.1007/JHEP11(2013)180

[arXiv:1310.1385 [hep-ph]].

[70] R. Harnik, J. Kopp and J. Zupan, JHEP 1303, 026 (2013) doi:10.1007/JHEP03(2013)026

[arXiv:1209.1397 [hep-ph]].

[71] V. Keus, N. Koivunen and K. Tuominen, arXiv:1712.09613 [hep-ph].

[72] C. A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006) doi:10.1103/PhysRevLett.97.131801

[hep-ex/0602020].

[73] J. M. Pendlebury et al., Phys. Rev. D 92, no. 9, 092003 (2015)

doi:10.1103/PhysRevD.92.092003 [arXiv:1509.04411 [hep-ex]].

[74] V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Phys. Rev. D 94, no. 3, 034031

29

5

0.5 1 1.5 2 2.5 3
vc / Tc

0

0.25

0.5

∆ 
Θ

t

0.5 1 1.5 2 2.5 3
vc/ Tc

0

0.25

0.5

∆Θ
t

FIG. 2: Shaded region: for f/b = 500GeV, mh = 120GeV
and ms = 80, 130GeV (upper and lower plots), the ∆Θt

achieved for a given vc/Tc in the Z2-symmetric case (a
tiny explicit breaking is assumed, see Section V). The
black lines (dotted, dot-dashed, dashed, solid, double dashed-
dotted) correspond to explicit examples with fixed λm =
0.25, 0.5, 0.75, 1, 1.5, respectively. Points on the red lines
match the observed baryon asymmetry (solid) or 1.5 (dot-
ted), 0.75 (dashed) times that value. The vertical line marks
vc/Tc = 1, below which the asymmetry would be erased by
active sphalerons.

fulfilled for natural values of the parameters.
We close this Section with a comparison of our

EWBG scenario with previous studies of EWBG in non-
supersymmetric models, such as the two-Higgs doublet
model [48, 53] or the SM with a low cut-off [29–32]. In
the former, CP violation arises already at the level of
renormalizable operators in the Higgs potential, through
a complex phase between the two Higgs VEVs. Very
strong phase transitions (induced by tree-level barriers)
are not possible in that context since, contrary to the
case with a singlet, the second Higgs doublet cannot ac-
quire a VEV prior to the EWPhT by definition. (To
circumvent this problem, ref. [54] studies a 2HDM with
an additional singlet: the two Higgs doublets violate CP ;
the singlet strengthens the EWPhT.) Although the non-
supersymmetric 2HDM does not address the hierarchy
problem, it is worth noting that it can also arise as the

low-energy limit of composite Higgs models [34].
The behaviour at finite temperature of other scenar-

ios that address the hierarchy problem but lead only
to a light single Higgs, such as the Minimal Composite
Higgs [22] or Little Higgs models, have been also ana-
lyzed. Refs. [31] studied the temperature behaviour of a
Higgs that arises as the PNGB of a broken global symme-
try,3 parametrizing the deviations from the SM through
effective operators. A strong EWPhT can result in this
setting from the dimension-six operator h6, which stabi-
lizes a Higgs potential with negative quartic coupling, as
discussed in [29, 30]. This creates a large tree-level bar-
rier but the reliability of the effective-theory description
is not then obvious. Different dimension-six operators are
responsible for sourcing CP violation [31, 32], in a man-
ner similar to our eq. (7), and for generating a complex
mass for the top quark: mt ∼ yt(vh+iv3h/Λ

2). Compared
to the model proposed here, these operators (which would
arise also in our model, in the limit of a heavy singlet)
are dimension-six and hence generally smaller than the
ones involving the singlet.

IV. ELECTRIC DIPOLE MOMENTS AND
OTHER CONSTRAINTS

The presence of a scalar that mixes with the Higgs and
has pseudoscalar couplings to fermions induces an elec-
tric dipole moment (EDM) for the electron and for the
neutron. The electron EDM receives the largest contribu-
tion from the two-loop Feynman diagram [56] of Figure 3,
where the electron flips its chirality by coupling to the

s

h

t t
t

e e e
FIG. 3: Diagram illustrating the largest contribution to the
electron EDM: the dashed line indicates a Higgs that mixes
with the singlet, which then couples with the top.

3 At even higher temperatures, the same mechanism that cuts off
quadratic divergences in the Higgs potential also affects its finite
temperature corrections and could lead to non-restoration of the
EW symmetry [55].

|de| ⇠< 1⇥ 10�29 (ACME 2018)

2-loop Barr-Zee contribution to EDM



Answer:     Assume the CP-violating coupling evolves with the 
universe. In the early universe, CP violation is large enough 
for successful baryogenesis. When the universe evolves to 
today, the CP violation becomes negligible !

Large enough  
CP-violating source 
in the early universe 

for successful  
EW baryogenesis 

Negligible   
CP-violating source 

at current time 
to avoid strong EDM  

constraints

Dynamical/cosmological evolve 

alleviate by assuming the CP-violating source  
is time dependent

Question:  How to alleviate the tension between sufficient CP  
violation for successful electroweak baryogenesis and strong 
constraints from current EDM measurements ?

• I. Baldes, T. Konstandin and G. Servant, arXiv:1604.04526, 

• I. Baldes, T. Konstandin and G. Servant, JHEP 1612, 073 (2016)  

• S. Bruggisser, T. Konstandin and G. Servant, JCAP 1711, no. 11, 034 (2017)



We choose reasonably small relative velocity      ~ 0.2, which is favored 
by the EW baryogenesis to guarantee a sufficient diffusion process in 
front of the bubble wall, and large enough bubble wall velocity                
to produce stronger phase transition GW (Roughly speaking, for 
deflagration case, a larger bubble wall velocity      gives stronger GW) 

ṽb

vb

vb ⇠ 0.5

ṽb(0.2) < vb(0.5) < cs(
p
3/3)

• J. M. No, Phys. Rev. D 84, 124025 (2011) 

Differences between relative velocity and bubble wall velocity for 
baryogenesis and GW in deflagration case.

Deflagration means the bubble wall velocity is  
small the velocity of sound wave. 



Dynamical CP violation can be produced during first-order 
phase transition process in the early universe induced by the 
complex Yukawa coupling.
For example, T=100 GeV, the new doublet scalar could  
have a complex VEV during the strong first-order phase transition in some 
parameter spaces, and then CP violating VEV is transferred to the baryon 
asymmetry production process through the new lepton Yukawa interaction  
with the following diagram. 

4 EWPT

Let us define the background fields as

⟨Φ⟩ =
(

0
1√
2
ϕ

)
=

(
0

1√
2
ϕ1

)
, ⟨η⟩ = eiθ

(
0

1√
2
ϕη

)
=

(
0

1√
2
(ϕ2 + iϕ3)

)
. (4.1)

In the vacuum at T = 0, ϕ1 = v, ϕ2 = ϕ3 = 0.

4.1 Effective potential

The daisy-improved 1-loop effective potential is

Veff(ϕ) = V0(ϕ) + V1(ϕ;T ) + Vdaisy(ϕ;T ), (4.2)
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Ση(T ) =
T 2

12

[
3λ2 + 2λ3 + λ4 +

3

4
(3g22 + g21) + Tr(y†y)

]
, (4.24)

where (y)ij = yij.
• gauge bosons
For the transverse part, there is no static thermal mass in the perturbation theory. Only the
longitudinal part gets the thermal corrections. The thermally corrected mass matrix in the
basis (A1

µ, A
2
µ, A

3
µ, Bµ) takes the form

M̄2
g(ϕ1;T ) =

⎛

⎜⎜⎝

g22ϕ
2
1/4 + ΠW (T ) 0 0 0

0 g22ϕ
2
1/4 + ΠW (T ) 0 0

0 0 g22ϕ
2
1/4 + ΠW (T ) −g2g1ϕ2

1/4
0 0 −g2g1ϕ2

1/4 g21ϕ
2
1/4 + ΠB(T )

⎞

⎟⎟⎠ .

(4.25)

The corresponding eigenvalues are

m̄2
WT

= m̄2
W , m̄2

ZT
= m̄2

Z , (4.26)

M̄2
ZL,γL

=
1

2

[
1

4
(g22 + g21)ϕ

2
1 + ΠW (T ) + ΠB(T )

±

√(
1

4
(g22 − g21)ϕ

2
1 + ΠW (T )− ΠB(T )

)2

+
g22g

2
1

4
ϕ4
1

]
, (4.27)

M̄2
WL

= m̄2
W + ΠW (T ), (4.28)

where the thermal masses of the gauge bosons are [5, 6]

ΠW (T ) = ΠSM
W (T ) + Π(2nd Higgs)

W (T ) =

[
11

6
+

1

6

]
g22T

2 = 2g22T
2, (4.29)

ΠB(T ) = ΠSM
B (T ) + Π(2nd Higgs)

B (T ) =

[
11

6
+

1

6

]
g21T

2 = 2g21T
2. (4.30)

5 BAU

5.1 CP-violating source term

Using the Closed-Time-Path (CTP) formalism, the CP-violating source of the SM lepton i
induced by the vector-like lepton j may be cast into the form [7]2

Sℓi(X) =
|yℓiEj |2

2
v2η(X)θ̇(X)H(mi,Γi,mj,Γj), (5.1)

where

H(mi,Γi,mj,Γj) =

∫ ∞

0

dk k2

π2

1

ωiωj
Im

[
(−1 + ni + nj)

EiEj + k2

(Ei + Ej)2
+ (−n∗

i + nj)
E∗
i Ej − k2

(E∗
i − Ej)2

]
,

(5.2)
2The expression is consistent with that in Ref. [7] except a term without the statistical factor ni,j .
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with Ei = ωi − iΓi, ωi =
√

k2 +mi(T )2 and ni = 1/(eEi/T + 1).
For a numerical calculation we may use the following expression

H(mi,Γi,mj,Γj) = T

∫ ∞

0

dx x2

π2

1

ω̃iω̃j
Im

[
(−1 + ni + nj)

ẼiẼj + k2

(Ẽi + Ẽj)2
+ (−n∗

i + nj)
Ẽ∗
i Ẽj − k2

(Ẽ∗
i − Ẽj)2

]
,

(5.3)

where Ẽi = ω̃i − iΓi/T , ω̃i =
√
x2 +m2

i /T
2 and ni = 1/(eẼi + 1).

5.2 CP-conserving source term

Γℓi(X) = Γ+
ℓi
(X)(µEj + µℓi) + Γ−

ℓi
(X)(µEj − µℓi), (5.4)

where

Γ±
ℓi
(X) =

|yℓiEj |2

2T
v2η(X)

∫ ∞

0

dk k2

2π2

1

ωiωj
Im

[
(ñj ∓ ñi)

EjEi + k2

Ej + Ei
+ (ñj ∓ ñ∗

i )
EjE∗

i − k2

Ej − E∗
i

]
, (5.5)

with ñi = ni(1− ni).
For a numerical calculation we may use

Γ±
ℓi
(X) =

|yℓiEj |2

2
v2η(X)T

∫ ∞

0

dx x2

2π2

1

ω̃iω̃j
Im

[
(ñj ∓ ñi)

Ẽj Ẽi + x2

Ẽj + Ẽi
+ (ñj ∓ ñ∗

i )
Ẽj Ẽ∗

i − x2

Ẽj − Ẽ∗
i

]
.

(5.6)

5.3 Diffusion equations

The relevant particle number densities are

Q3 = ntL + nbL , T = ntR , B = nbR , (5.7)

L2 = nνµL
+ nµL , ER = nER , (5.8)

H = nΦ+ + nΦ0 + nη+ + nη0 . (5.9)

The number density (ni) expanded to the leading order in the chemical potential µ is reduced
to nb,f = T 2µkb,f/6 with

kb,f (a) = g
6

π2

∫ ∞

0

dx
x2e

√
x2+a2

(e
√
x2+a2 ∓ 1)2

= g
6

π2

∫ ∞

a

dy
yey

(ey ∓ 1)2
√

y2 − a2, (5.10)

with a = m/T , g counts the degrees of freedom and b (f) denoting bosons (fermions). For
a ≪ 1, one gets

nb =
gT 2µ

6

[
2− 3

πT
(m2)1/2 +

3m2

2πT 2
+O

(
m4

T 4

)]
, (5.11)

nf =
gT 2µ

6

[
1− 3m2

2π2T 2
+O

(
m4

T 4

)]
. (5.12)

13

with Ei = ωi − iΓi, ωi =
√

k2 +mi(T )2 and ni = 1/(eEi/T + 1).
For a numerical calculation we may use the following expression

H(mi,Γi,mj,Γj) = T

∫ ∞

0

dx x2

π2

1

ω̃iω̃j
Im

[
(−1 + ni + nj)
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(Ẽi + Ẽj)2
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(ñj ∓ ñi)
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+ (ñj ∓ ñ∗
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(Ẽ∗
i − Ẽj)2
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Γℓi(X) = Γ+
ℓi
(X)(µEj + µℓi) + Γ−

ℓi
(X)(µEj − µℓi), (5.4)

where

Γ±
ℓi
(X) =

|yℓiEj |2

2T
v2η(X)

∫ ∞

0

dk k2

2π2

1

ωiωj
Im

[
(ñj ∓ ñi)

EjEi + k2

Ej + Ei
+ (ñj ∓ ñ∗

i )
EjE∗

i − k2

Ej − E∗
i

]
, (5.5)

with ñi = ni(1− ni).
For a numerical calculation we may use

Γ±
ℓi
(X) =

|yℓiEj |2

2
v2η(X)T

∫ ∞

0

dx x2

2π2

1

ω̃iω̃j
Im

[
(ñj ∓ ñi)

Ẽj Ẽi + x2

Ẽj + Ẽi
+ (ñj ∓ ñ∗

i )
Ẽj Ẽ∗

i − x2

Ẽj − Ẽ∗
i

]
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(5.6)

5.3 Diffusion equations

The relevant particle number densities are

Q3 = ntL + nbL , T = ntR , B = nbR , (5.7)

L2 = nνµL
+ nµL , ER = nER , (5.8)

H = nΦ+ + nΦ0 + nη+ + nη0 . (5.9)

The number density (ni) expanded to the leading order in the chemical potential µ is reduced
to nb,f = T 2µkb,f/6 with

kb,f (a) = g
6

π2

∫ ∞

0

dx
x2e

√
x2+a2

(e
√
x2+a2 ∓ 1)2

= g
6

π2

∫ ∞

a

dy
yey

(ey ∓ 1)2
√

y2 − a2, (5.10)

with a = m/T , g counts the degrees of freedom and b (f) denoting bosons (fermions). For
a ≪ 1, one gets

nb =
gT 2µ

6

[
2− 3

πT
(m2)1/2 +

3m2

2πT 2
+O

(
m4

T 4

)]
, (5.11)

nf =
gT 2µ

6

[
1− 3m2

2π2T 2
+O

(
m4

T 4

)]
. (5.12)
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In the massless limit, kb = 2 and kf = 1.
For the numerical calculation, we change the integration variable as

s = ea−
√
x2+a2 ,

ds

s
= − xdx√

x2 + a2
, x =

√
ln s(ln s− 2a). (5.13)

Therefore

nb,f =
T 2µ

6
kb,f (a), (5.14)

where

kb,f (a) = g
6

π2
ea

∫ 1

0

ds
(a− ln s)

√
ln s(ln s− 2a)

(ea ∓ s)2
. (5.15)

The set of Boltzmann equations is given by

∂µj
µ
Q3

= −ΓYt(ξQ3 + ξH − ξT ) + ΓMt(ξT − ξQ3)− 2ΓssN5, (5.16)

∂µj
µ
T = ΓYt(ξQ3 + ξH − ξT )− ΓMt(ξT − ξQ3) + ΓssN5, (5.17)

∂µj
µ
L2

= −ΓYµE(ξL2 − ξH − ξR) + Γ+
MµE

(ξR2 + ξL2) + Γ−
MµE

(ξR2 − ξL2) + SµL , (5.18)

∂µj
µ
ER

= ΓYµE(ξL2 − ξH − ξR)− Γ+
MµE

(ξR2 + ξL2)− Γ−
MµE

(ξR2 − ξL2)− SµL , (5.19)

∂µj
µ
H = ΓYt(ξQ3 + ξH − ξT ) + ΓYµE(ξL2 − ξH − ξR)− ΓHξH , (5.20)

where ξi = ni/ki, N5 = 2ξQ3 − ξT + 9(Q3 + T )/kB, and ∂µj
µ
i = ṅi − Di∇2ni with Di being

a diffusion constant. In solving these coupled equations, we utilize the chemical equilibrium
conditions in light of Γ−1

ss ,Γ
−1
Yt
,Γ−1

YµE
< τdiff , the typical diffusion time for the particles under

consideration. In this case, the above coupled Boltzmann equations are reduced to a single
differential equation with respect to H as [8]

Ḣ(X)− D̄∇2H(X) + Γ̄H(X)− S̄(X) +O
(

1

Γss
,
1

ΓY

)
= 0, (5.21)

where

D̄ =
bcDQ + acDH + adDL

ac+ bc+ ad
, (5.22)

Γ̄ =
ac

kH(ac+ bc+ ad)
(Γ−

Mt
++Γ−

MµE
+ ΓH) ≡ rΓ(Γ

−
Mt

++Γ−
MµE

+ ΓH), (5.23)

S̄ =
ac

ac+ bc+ ad
SµL (5.24)

with

a = kH(9kQ3 + 9kT + kB), b = 9kQ3kT + kQ3kB + 4kTkB, (5.25)

c = kH
(
DLkL2 +DEkER

)
, d = kL2kEDE. (5.26)

Since the wall thickness is much smaller than the wall radius, we can ignore the curvature of
the bubbles. We thus concentrate on the z direction in which the bubble wall is moving (the
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wall is advancing in the negative z direction), X = (t, 0, 0, z). We transform the plasma rest
frame (heat bath) to the wall rest frame as3

z → z̄ = z + vwt. (5.27)

The diffusion equation is reduced to

vwH
′(z̄)− D̄H ′′(z̄) + Γ̄(z̄)H(z̄)− S̄(z̄) = 0. (5.28)

Assuming that Γ̄(z̄) is nonzero and constant for z̄ > 0, the solution for H(z̄) in the symmetric
phase is

H(z̄) = Aevw z̄/D̄, A =
1

D̄λ+

∫ ∞

0

dz′ S̄(z′)e−λ+z′ , λ+ =
vw +

√
v2w + 4D̄Γ̄

2D̄
. (5.29)

In the limit of 4D̄Γ̄ ≫ v2w and Lw

√
Γ̄/D̄ ≪ 1, A is simplified to

A = kHLw

√
rΓ
D̄

SµL√
Γ−
Mt

+ Γ−
MµE

+ ΓH

. (5.30)

where we assume that S̄ is constant.

5.4 Baryon number density

It is a formidable task to calculate the baryon number density (nB) from first principle. Here,
we employ the rather phenomenological approach to estimate nB. The diffusion equation for
nB may take the form

DQn
′′
B(z̄)− vwn

′
B(z̄)− θ(−z̄)RnB(z̄) = θ(−z̄)

Ng

2
Γ(sym)
B nL(z̄), (5.31)

where Ng is the number of the fermion generation and Γ(sym)
B is the baryon changing rate

in the symmetric phase. After imposing the boundary conditions, nB(z̄ → −∞) → 0 and
n′
B(z̄ > 0) = 0, one arrives at

nB(z̄ > 0) =
−NgΓ

(sym)
B

2DQλ+

∫ 0

−∞
dz′ nL(z

′)e−λ−z′ , (5.32)

where

λ± =
1

2DQ

[
vw ±

√
v2w + 4RDQ

]
(5.33)

and nL(z̄) is

nL = Q1 +Q2 +Q3 + L2 = 5Q3 + 4T + L2

=

(
−r1 +

d

c

)
H +O

(
1

Γss
,
1

ΓY

)
, (5.34)

3See Appendix A.
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Without loss of generality, we can assume  
 In this simple scenario,  the CP-even particle H can be the dark 
matter candidate.   
Further, if  
T parameter is zero and  

Dark matter 
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FIG. 5: 90% confidence level upper limit on �SI from this
work (thick black line) with the 1� (green) and 2� (yel-
low) sensitivity bands. Previous results from LUX [6] and
PandaX-II [7] are shown for comparison. The inset shows
these limits and corresponding ±1� bands normalized to the
median of this work’s sensitivity band. The normalized me-
dian of the PandaX-II sensitivity band is shown as a dotted
line.

injecting an undisclosed number and class of events in
order to protect against fine-tuning of models or selec-
tion conditions in the post-unblinding phase. After the
post-unblinding modifications described above, the num-
ber of injected salt and their properties were revealed to
be two randomly selected 241AmBe events, which had
not motivated any post-unblinding scrutiny. The num-
ber of events in the NR reference region in Table I is con-
sistent with background expectations. The profile likeli-
hood analysis indicates no significant excesses in the 1.3 t
fiducial mass at any WIMP mass, with a p-value for the
background-only hypothesis of 0.28, 0.41, and 0.22 at
6, 50, and 200 GeV/c2, respectively. Figure 5 shows the
resulting 90% confidence level upper limit on �SI . The
2� sensitivity band spans an order of magnitude, indi-
cating the large random variation in upper limits due to
statistical fluctuations of the background (common to all
rare-event searches). The sensitivity itself is una↵ected
by such fluctuations, and is thus the appropriate mea-
sure of the capabilities of an experiment [44]. The inset
in Fig. 5 shows that the median sensitivity of this search
is ⇠7.0 times better than previous experiments [6, 7] at
WIMP masses > 50 GeV/c2.

In summary, we performed a DM search using an ex-
posure of 278.8 days ⇥ 1.3 t = 1.0 t⇥yr, with an ER
background rate of (82+5

�3 (sys) ± 3 (stat)) events/(t ⇥
yr ⇥ keVee), the lowest ever achieved in a DM search
experiment. We found no significant excess above back-
ground and set an upper limit on the WIMP-nucleon
spin-independent elastic scattering cross-section �SI at
4.1⇥10�47 cm2 for a mass of 30 GeV/c2, the most strin-

gent limit to date for WIMP masses above 6 GeV/c2. An
imminent detector upgrade, XENONnT, will increase the
target mass to 5.9 t. The sensitivity will improve upon
this result by more than an order of magnitude.
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Allowed by LHC data， Lorenzo Calibbi, Robert Ziegler, Jure Zupan,  
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Direct measurements of  vector-like lepton mass



Indirect search by

Large enhancement of Z boson decay by the requirements  
of EW baryogenesis and DM.  

Further generalisation of this enhancement  
effects from the aspects of symmetry breaking 

is working in progress.

An important missing observable  
in many previous study!



To satisfy the EW strong first-order phase transition (baryogenesis) and DM 
it requires the large mass splitting of the scalar mass spectrum in the same multiplet, 

which leads to significant enhancement of the Z boson decay.  
Tera-Z can be a new indirect search 

to explore DM and baryogenesis.



Indirect search by GW signals 
Complementary test by GW signals, precise measurements of Z boson decay,  
HZ cross section measurements and direct production of di-muon plus MET. 



Indirect search by future g-2 precise measurements



Schematic phase transition GW spectra for SKA-like and LISA-
like experiments to detect DM and baryogenesis 
   FPH, Xinmin Zhang, Physics Letters B 788 (2019) 288-294 
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Conclusion
The SKA-like and LISA-like experiments  

(more and more experiments, SKA, FAST, GBT, 
LISA, Tianqin/Taiji) can provide new indirect 

approaches or even multi-messengers to explore 
the nature of dark matter and baryon 

asymmetry of the universe.           

Comments and collaborations are welcome!

Thanks for your attention!


