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in @ pseudoscalar mediator dark matter model
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WIMP dark matter

Features of WIMP (Weakly Interacting Massive Particle)
« weakly interacting to the SM
« freeze out mechanism
« correlation among various observables
« simple and attractive

annihilation (thermal relic, indirect detection)
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Constraints from direct detection
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e WIMP models have been severely constrained today
e We need ideas to avoid this strong constraint
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[XENON1T (2018)]



Fermionic DM with Pseudo-scalar coupling

If DM has a pseudo-scalar interaction,
LD @Zi%wa @ = DM, a = mediator (scalar)

then we can avoid the constraints from the direct detections
while keeping the WIMP scenario
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Fermionic DM with Pseudo-scalar coupling

If DM has a pseudo-scalar interaction,
LD @Zi%wa @ = DM, a = mediator (scalar)

then we can avoid the constraints from the direct detections
while keeping the WIMP scenario

Suppression in the direct detection Annihilation cross section is not suppressed
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Two-Higgs-Doublet Model + a

DM and scalar sector

DM
CP-odd mediator

two-Higgs doublets

spin._ SU(2), U(l)y Zs

X
ao
H,
Hs

1/2 1 0 -1
0 1 0 1
0 2 1/2 1
0 2 1/2 1

[Ipek et. al (2014)]

see a white paper for more details
[1810.09420]



Two-Higgs-Doublet Model + a

DM and scalar sector

spin. SU(2), U(l)y 2o
DM x | 1/2 1 0 —1
CP-odd mediator ag 0 1 0 1
two-Higgs doublets H, 0 2 1/2 1
Ho 0 2 1/2 1
Assumptions
e <ap> =0

[Ipek et. al (2014)]

see a white paper for more details
[1810.09420]

 CP invariance in the DM and scalar sectors
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DM and scalar sector
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Assumptions
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 CP invariance in the DM and scalar sectors

Pseudoscalar interaction

X q
Ix XY5a0X \
only pseudo-scalar interaction Vs W= ==Y ——— & V5
thanks to CP invariance o  Ag



Two-Higgs-Doublet Model + a [Tpek et. al (2014)]

DM and scalar sector

spin SU(2),  U(l)y 2o
DM x | 1/2 1 0 ]
CP-odd mediator ag 0 1 0 1
i H 0 2 1/2 1
two-Higgs doublets -1 | |
H, 0 2 1/2 1 see a white paper for more details
[1810.09420]

Assumptions
e <ap> =0

 CP invariance in the DM and scalar sectors

Pseudoscalar interaction mix the two CP-odd states
X 9 A\ [ cosf sinf\ (A°
iy a) \—sin@ cosf) \ ag
IxX1Y500X \
only pseudo-scalar interaction Vo - —— = ——— & V5 o
thanks to CP invariance 0 Ay g (WOH 142 + (h-c-))



A model with pseudo-scalar mediator (cont’d)

Lagrangian

L_ . Ix  _.
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2
1 m2 g
+ iﬁ“agﬁﬂao — 20 ag — Zag

— K (iaOH;ng + (hc)) — cla%HIHl — CQCL%H;HQ



A model with pseudo-scalar mediator (cont’d)
Lagrangian

In this talk, g, is fixed to obtain the
correct relic abundance (£2h2 = 0.12)

L, 9  _.
L5+ 5x (i = my) X + TEaoxin

2
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A model with pseudo-scalar mediator (cont’d)
Lagrangian

In this talk, g, is fixed to obtain the
correct relic abundance (£2h2 = 0.12)

L, 9  _.
L5+ 5x (i = my) X + TEaoxin

2
1 m2 Mg
+ 5({9“&0(9”0,0 — 9 0 a% — Zaé

— K (iaoHing + (hc)) — cralHIH — coa HYH,

c: and ¢, play important role in the followings



Loop diagrams are essential for Oy

Os: =0 at the tree level Os: > 0 at the loop level
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{loop correction is essential if models predict os; = O at the tree level! §




loop diagrams
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Some diagrams were calculated, but not all the dlagrams
We calculate all the relevant diagrams [TA Fujiwara Hisano (2019)]

(heavy quarks)




loop diagrams

XX4qq XXG“ G"’“”
X X
\i—f/ * * ¢ * \ /
|
/ |
mAN A e, AV 1A h/H.
\ h/H :
' / :5 ‘5
q q

Q =t,b,c (heavy quarks)
Some diagrams were calculated, but not all the dlagrams

We calculate all the relevant diagrams [TA Fujiwara Hisano (2019)]
« 1-loop diagrams were calculated in the literatures [ipek+ ('14), Arcadi+ (‘18), Bell+ ('18), -]

= pbut the foIIowing terms were ignored
claOH H, —|—CQCLOH Hs

»we find they are important [TA Fujiwara Hisano (2019)]
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We calculate all the relevant diagrams [TA Fujiwara Hisano (2019)]

« 1-loop diagrams were calculated in the literatures [ipek+ ('14), Arcadi+ ('18), Bell+ ('18), -]

= put the foIIowing terms were ignored
claOH H, —|—CQCLOH Ho
»we find they are important [TA Fujiwara Hisano (2019)]

« 2-loop diagrams were “estimated” in the literature [Arcadi+ ('18)]
= pbut not “calculated”

*we find their estimation is not so accurate [TA Fujiwara Hisano (2019)]




[TA Fujiwara Hisano (2019)]
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large c2 vs scalar potential

large c, is
e good to make og; large enough to test this model
e might be dangerous for the Higgs potential

K)(iCLOHIHQ + h.c.) + cla%HirHl + CQCL(Q)H;HQ

We are trying to find upper/lower bounds on c¢; and ¢, from
e conditions for the potential bounded from below
e conditions for the Electroweak vacuum as the global minimum
e perturbative unitarity bound
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[TA Fujiwara Hisano Shoji (on-going)]

large C2 vs scalar potential

Mipea=1TeV, m,=100 GeV, tg=1, 6=0.1, A,=1.0
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e e L |« 0g1 becomes large for large c; or ¢

« Qh2 = 0.12 by choosing gy
e Og1 < 4.4 x 10-46 cm2 Iin the plain

¢ Og1 < 1.4 x 10-45cm?2 (XenonlT)
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[TA Fujiwara Hisano Shoji (on-going)]

large C2 vs scalar potential

‘Mp e A=1T€V, ma=100 GeV, t5=1, 6=0.1, A,=1.0
| | Contours for Log10[0s1/cm2]

|« 0g; becomes large for large ¢; or ¢,
e Mpy = 1.5 TeV

« Qh2 = 0.12 by choosing gy

e Og1 < 4.4 x 10-46 cm2 Iin the plain

¢ Og1 < 1.4 x 10-45cm?2 (XenonlT)
| XENONNT/LZ prospect
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large C2 vs scalar potential

muHA=1000GeV, m;=100 GeV, tz=1, 6=0.1, A5=1.

2 |

<ap> # 0 and
<H;> = <H,> =0

at global minimum |

Potential is unbounded
from below

[TA Fujiwara Hisano Shoji (ongoing)]

| Contours for Logi10[0s1/cm2]

* Og1 becomes large for large c; or ¢,
e Mpy = 1.5 TeV

« Qh2 = 0.12 by choosing gy

e Og1 < 4.4 X 10-46 cm?2 in the plain

¢ Og1 < 1.4 x 1045cm2 (XenonlT)

| XENONNT/LZ prospect

1 neutrino floor

neutrino floor

C1 XENONNT/LZ prospect

[Preliminary]
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Summary

two-Higgs doublet model + fermion DM + aq
e freeze-out mechanism works
e Og; IS suppressed at the tree level
e |oop calculation is needed

We complete loop calculations
e the effect of quartic couplings (c; and ¢;) are important

cla(Q)Hle -+ CQCL?)H;HQ

We are trying to find upper/lower bounds on c¢; and c;
e large cl1 and c2 make og; large
e too large cl1 and c2 predicts electroweak symmetry is not
broken at the global minimum
e potential is unbounded if c1 and c2 are negative
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