Loop corrections to dark matter direct detection in a pseudoscalar mediator dark matter model

Tomohiro Abe
Institute for Advanced Research,
KMI, Nagoya U.

Junji Hisano Nagoya U, KMI, Kavli IPMU

in collaboration with Motoko Fujiwara

Yutaro Shoji KMI, Nagoya U.

This talk is based on JHEP 1902 (2019) 028 (arXiv:1810.01039) and an ongoing project

WIMP dark matter

Features of WIMP (Weakly Interacting Massive Particle)

- weakly interacting to the SM
- freeze out mechanism
- correlation among various observables
- simple and attractive

Constraints from direct detection

[XENON1T (2018)]

- WIMP models have been severely constrained today
- We need ideas to avoid this strong constraint

Fermionic DM with Pseudo-scalar coupling

If DM has a pseudo-scalar interaction,

$$\mathcal{L} \supset \bar{\psi} i \gamma_5 \psi a$$
 $\psi = \text{DM}, \ a = \text{mediator (scalar)}$

then we can avoid the constraints from the direct detections while keeping the WIMP scenario

Fermionic DM with Pseudo-scalar coupling

If DM has a pseudo-scalar interaction,

$$\mathcal{L} \supset \bar{\psi} i \gamma_5 \psi a$$
 $\psi = \text{DM}, \ a = \text{mediator (scalar)}$

then we can avoid the constraints from the direct detections while keeping the WIMP scenario

Suppression in the direct detection

$$\psi = \sum_{s} \int \frac{d^{3}p}{(2\pi)^{3} \sqrt{2E_{p}}} \left(a_{p,s} u_{s}(p) e^{-ipx} + b_{p,s}^{\dagger} v_{s}(p) e^{ipx} \right)$$

Fermionic DM with Pseudo-scalar coupling

If DM has a pseudo-scalar interaction,

$$\mathcal{L} \supset \bar{\psi} i \gamma_5 \psi a$$
 $\psi = \text{DM}, \ a = \text{mediator (scalar)}$

then we can avoid the constraints from the direct detections while keeping the WIMP scenario

Suppression in the direct detection

$$\psi = \sum_{s} \int \frac{d^{3}p}{(2\pi)^{3} \sqrt{2E_{p}}} \left(a_{p,s} u_{s}(p) e^{-ipx} + b_{p,s}^{\dagger} v_{s}(p) e^{ipx} \right)$$

Annihilation cross section is not suppressed

[Ipek et. al (2014)]

DM and scalar sector

		spin	$SU(2)_L$	$\mathrm{U}(1)_Y$	Z_2
DM	χ	1/2	1	0	-1
CP-odd mediator	a_0	0	1	0	1
two-Higgs doublets	H_1	0	2	1/2	1
	H_2	0	2	1/2	1

see a white paper for more details [1810.09420]

[Ipek et. al (2014)]

DM and scalar sector

-					
_		spin	$SU(2)_L$	$\mathrm{U}(1)_Y$	Z_2
DM	χ	1/2	1	0	-1
CP-odd mediator	a_0	0	1	0	1
two-Higgs doublets	H_1	0	2	1/2	1
	H_2	0	2	1/2	1

see a white paper for more details

[1810.09420]

Assumptions

- $< a_0 > = 0$
- CP invariance in the DM and scalar sectors

[Ipek et. al (2014)]

DM and scalar sector

-					
-		spin	$SU(2)_L$	$\mathrm{U}(1)_Y$	Z_2
DM	χ	1/2	1	0	-1
CP-odd mediator	a_0	0	1	0	1
two-Higgs doublets	H_1	0	2	1/2	1
	H_2	0	2	1/2	1

see a white paper for more details

[1810.09420]

Assumptions

- $< a_0 > = 0$
- CP invariance in the DM and scalar sectors

Pseudoscalar interaction

[Ipek et. al (2014)]

DM and scalar sector

-					
-		spin	$SU(2)_L$	$\mathrm{U}(1)_Y$	Z_2
DM	χ	1/2	1	0	-1
CP-odd mediator	a_0	0	1	0	1
two-Higgs doublets	H_1	0	2	1/2	1
	H_2	0	2	1/2	1

see a white paper for more details

[1810.09420]

Assumptions

- $< a_0 > = 0$
- CP invariance in the DM and scalar sectors

Pseudoscalar interaction

[Ipek et. al (2014)]

DM and scalar sector

-					
- -		spin	$SU(2)_L$	$\mathrm{U}(1)_Y$	Z_2
DM	χ	1/2	1	0	-1
CP-odd mediator	a_0	0	1	0	1
two-Higgs doublets	H_1	0	2	1/2	1
	H_2	0	2	1/2	1

see a white paper for more details
[1810.09420]

Assumptions

- $< a_0 > = 0$
- CP invariance in the DM and scalar sectors

A model with pseudo-scalar mediator (cont'd)

Lagrangian

$$\mathcal{L} \supset +\frac{1}{2}\bar{\chi} \left(i\partial \!\!\!/ - m_{\chi}\right) \chi + \frac{g_{\chi}}{2} a_0 \bar{\chi} i \gamma^5 \chi$$

$$+ \frac{1}{2} \partial^{\mu} a_0 \partial_{\mu} a_0 - \frac{m_{a_0}^2}{2} a_0^2 - \frac{\lambda_a}{4} a_0^4$$

$$- \kappa \left(i a_0 H_1^{\dagger} H_2 + (h.c.)\right) - c_1 a_0^2 H_1^{\dagger} H_1 - c_2 a_0^2 H_2^{\dagger} H_2$$

A model with pseudo-scalar mediator (cont'd)

Lagrangian

In this talk, g_{χ} is fixed to obtain the correct relic abundance ($\Omega h^2 = 0.12$)

$$\mathcal{L} \supset +\frac{1}{2}\bar{\chi} \left(i\partial \!\!\!/ - m_{\chi}\right) \chi + \frac{g_{\chi}}{2} a_{0} \bar{\chi} i \gamma^{5} \chi$$

$$+\frac{1}{2} \partial^{\mu} a_{0} \partial_{\mu} a_{0} - \frac{m_{a_{0}}^{2}}{2} a_{0}^{2} - \frac{\lambda_{a}}{4} a_{0}^{4}$$

$$-\kappa \left(i a_{0} H_{1}^{\dagger} H_{2} + (h.c.)\right) - c_{1} a_{0}^{2} H_{1}^{\dagger} H_{1} - c_{2} a_{0}^{2} H_{2}^{\dagger} H_{2}$$

A model with pseudo-scalar mediator (cont'd)

Lagrangian

In this talk, g_{χ} is fixed to obtain the correct relic abundance ($\Omega h^2 = 0.12$)

$$\mathcal{L} \supset +\frac{1}{2}\bar{\chi} \left(i\partial \!\!\!/ - m_{\chi}\right) \chi + \frac{g_{\chi}}{2} a_{0} \bar{\chi} i \gamma^{5} \chi$$

$$+\frac{1}{2} \partial^{\mu} a_{0} \partial_{\mu} a_{0} - \frac{m_{a_{0}}^{2}}{2} a_{0}^{2} - \frac{\lambda_{a}}{4} a_{0}^{4}$$

$$-\kappa \left(i a_{0} H_{1}^{\dagger} H_{2} + (h.c.)\right) - c_{1} a_{0}^{2} H_{1}^{\dagger} H_{1} - c_{2} a_{0}^{2} H_{2}^{\dagger} H_{2}$$

c₁ and c₂ play important role in the followings

Loop diagrams are essential for σ_{SI}

 $\sigma_{SI} = 0$ at the tree level

$$(\bar{\chi}\gamma^5\chi)\mathcal{O}_{\mathrm{SM}}$$

$\sigma_{SI} > 0$ at the loop level

loop correction is essential if models predict $\sigma_{SI} = 0$ at the tree level!

loop diagrams

Q = t, b, c (heavy quarks)

Some diagrams were calculated, but not all the diagrams
We calculate all the relevant diagrams [TA Fujiwara Hisano (2019)]

loop diagrams

Q = t, b, c (heavy quarks)

Some diagrams were calculated, but not all the diagrams We calculate all the relevant diagrams [TA Fujiwara Hisano (2019)]

- 1-loop diagrams were calculated in the literatures [Ipek+ ('14), Arcadi+ ('18), Bell+ ('18), ...]
 - *but the following terms were ignored

$$c_1 a_0^2 H_1^{\dagger} H_1 + c_2 a_0^2 H_2^{\dagger} H_2$$

* we find they are important [TA Fujiwara Hisano (2019)]

loop diagrams

Q = t, b, c (heavy quarks)

Some diagrams were calculated, but not all the diagrams We calculate all the relevant diagrams [TA Fujiwara Hisano (2019)]

- 1-loop diagrams were calculated in the literatures [Ipek+ ('14), Arcadi+ ('18), Bell+ ('18), ...]
 - ⋆ but the following terms were ignored

$$c_1 a_0^2 H_1^{\dagger} H_1 + c_2 a_0^2 H_2^{\dagger} H_2$$

- * we find they are important [TA Fujiwara Hisano (2019)]
- 2-loop diagrams were "estimated" in the literature [Arcadi+ ('18)]
 - ⋆ but not "calculated"
 - * we find their estimation is not so accurate [TA Fujiwara Hisano (2019)]

σ_{SI} is large if C2 \neq 0

$$c_1 a_0^2 H_1^{\dagger} H_1 + c_2 a_0^2 H_2^{\dagger} H_2$$

$$m_a$$
=70 GeV

$$m_A = 600 \text{ GeV},$$

 $m_A = 70 \text{ GeV}$ $\theta = 0.1, t_\beta = 10, c_1 = 0$

c2 is important to make σ_{SI} larger than neutrino floor

large c2 vs scalar potential

large c₂ is

- \bullet good to make σ_{SI} large enough to test this model
- might be dangerous for the Higgs potential

$$\kappa(ia_0H_1^{\dagger}H_2 + \text{h.c.}) + c_1a_0^2H_1^{\dagger}H_1 + c_2a_0^2H_2^{\dagger}H_2$$

We are trying to find upper/lower bounds on c₁ and c₂ from

- conditions for the potential bounded from below
- conditions for the Electroweak vacuum as the global minimum
- perturbative unitarity bound

• ...

large C2 vs scalar potential

Contours for $Log_{10}[\sigma_{SI}/cm^2]$

- σ_{SI} becomes large for large c_1 or c_2
- $m_{DM} = 1.5 \text{ TeV}$
- $\Omega h^2 = 0.12$ by choosing g_X
- σ_{SI} < 4.4 x 10⁻⁴⁶ cm² in the plain
- σ_{SI} < 1.4 x 10⁻⁴⁵ cm² (Xenon1T)

[Preliminary]

large C2 vs scalar potential

[Preliminary]

[TA Fujiwara Hisano Shoji (ongoing)]

large C2 vs scalar potential

Contours for $Log_{10}[\sigma_{SI}/cm^2]$

- σ_{SI} becomes large for large c_1 or c_2
- $m_{DM} = 1.5 \text{ TeV}$
- $\Omega h^2 = 0.12$ by choosing g_X
- σ_{SI} < 4.4 x 10⁻⁴⁶ cm² in the plain
- σ_{SI} < 1.4 x 10⁻⁴⁵ cm² (Xenon1T)

XENONnT/LZ prospect

[Preliminary]

Summary

two-Higgs doublet model + fermion DM + a₀

- freeze-out mechanism works
- \bullet σ_{SI} is suppressed at the tree level
- loop calculation is needed

We complete loop calculations

• the effect of quartic couplings (c₁ and c₂) are important

$$c_1 a_0^2 H_1^{\dagger} H_1 + c_2 a_0^2 H_2^{\dagger} H_2$$

We are trying to find upper/lower bounds on c₁ and c₂

- large c1 and c2 make σ_{SI} large
- too large c1 and c2 predicts electroweak symmetry is not broken at the global minimum
- potential is unbounded if c1 and c2 are negative