BBN and Leptogenesis in the CMSSM

Masato Yamanaka

(Nambu Yoichiro Institute, Osaka City Univ.)

PRD97, 115013 (arXiv:1803.07686)

M. Kubo, J. Sato, T. Shimomura, Y. Takanishi, and MY

Realistic CMSSM from the view points of Higgs, DM, BBN, and baryon asymmetry

Evidence of new physics

- Dark matter
- Big-bang nucleosynthesis (BBN)
- Neutrino mass
- Baryon asymmetry
- · etc.

Candidate of new physics: CMSSM with seesaw mechanism

Let's see DM and BBN in this scenario

Spectrum in CMSSM with RH neutrinos

Lightest SUSY particle (LSP):

DILI

Bino-like neutralino $\tilde{\chi}$ (DM)

stau-like lightest slepton $\, ilde{\ell}\,$

Nest LSP (NLSP):

Large allowed space?

No! Over abundance of DM in most of space!!

Realistic region in light of Higgs mass, muon g-2, and so on

$$\delta m \equiv m_{\tilde{\ell}} - m_{\widetilde{\chi}} < m_{\tau}$$

 $M_{1/2}$ (GeV)

Coannihilation region

Orange: DM relic OK, $\delta m > m_{\tau}$

M_{1/2} (GeV)

Realistic region in light of Higgs mass, muon g-2, and so on

$$\delta m \equiv m_{\tilde{\ell}} - m_{\widetilde{\chi}} < m_{\tau}$$

L. Aparicio, D. Cerdeno, L. Ibanez, JHEP (2012) M. Citron, J. Ellis, F. Luo, et al, PRD (2013)

Long-lived slepton due to phase space suppression

Will be "a good medicine" for BBN

T. Jittoh, J. Sato, T. Shimomura, MY, PRD (2006)

BBN successfully predicts light element abundances, **except for Li7**

Li7 problem -----

Discrepancy between observed and predicted Li abundance

F. Spite and M. Spite, Astron. Astrophys. (1982)

Idea-1 We are in a special galaxy
No! Lack of Li7 out of galaxy

A. Mucciarelli, et al. (2014)

Idea-2 A nuclear reaction solves Li7 prob.

No! Confirmed to be tiny contribution

T. Kawabata, et al. PRL (2017)

The Li7 problem becomes more serious

In the BBN era ($t_U \sim 1 \mathrm{min}$), positive charged $^7\mathrm{Be}$, $^7\mathrm{Li}$ are synthesized

Forming exotic atoms $(\tilde{\tau}^7 \text{Be}), (\tilde{\tau}^7 \text{Li})$

Negative charged $\widetilde{\ell}^-$ is produced at $t_U\sim 10^{-10}{
m sec}$ and survives until BBN

Nuclear conversion in the exotic atoms

$$(\tilde{\ell}^{7} \text{Be}) \rightarrow {}^{7} \text{Li} + \nu_{\tau} + \tilde{\chi}$$

$$(\tilde{\ell}^7 \text{Li}) \rightarrow {}^7 \text{He} + \nu_{\tau} + \tilde{\chi}$$

Li7 is sufficiently reduced, and the Li7 problem is solved

T. Jittoh, K. Kohri, M. Koike, J. Sato, T. Shimomura, M.Y., PRD76 C. Bird, K. Koopmans, M. Pospelov, PRD78

Aim

If this scenario describes our universe, the baryon asymmetry must be generated

Current status

Evidence of new physics

- · Dark matter
- · Big-bang nucleosynthesis
- · Neutrino mass
- · Baryon asymmetry
- · etc.

Candidate of new physics: CMSSM with seesaw mechanism

Let's see DM and BBN in this scenario

<u>Aim</u>

- Accounting for baryon asymmetry in the scenario
- Find a unique signal/relation to confirm the scenario

CMSSM with RH neutrinos

CMSSM parameter : $M_{1/2}, m_0, A_0, \tan \beta, \operatorname{sign}(\mu)$

RH neutrino :
$$\mathcal{W}=(\hat{y}_\ell)_\alpha L_\alpha H_d E^c_\alpha + (y_\nu)_{\alpha i} L_\alpha H_u N^c_i + (\hat{M}_R)_i N^c_i N^c_i$$

LSP : Bino-like neutralino $\tilde{\chi}$

NLSP : stau-like slepton
$$\tilde{\ell} = \sum_{f=e,\mu, au} C_f \tilde{f}$$
 $\tilde{f} = \cos\theta_f \tilde{f}_L + \sin\theta_f \tilde{f}_R$

$$\tilde{f} = \cos \theta_f \tilde{f}_L + \sin \theta_f \tilde{f}_R$$

CMSSM with RH neutrinos

constraint

DM relic density

- light element abundances
- baryon asymmetry

 \longrightarrow $(y_{\nu})_{\alpha i}$ and M_R

RH neutrino : $\mathcal{W} = (\hat{y}_\ell)_\alpha L_\alpha H_d E^c_\alpha + (y_\nu)_{\alpha i} L_\alpha H_u N^c_i + (\hat{M}_R)_i N^c_i N^c_i$

slepton mixing C_f and LR mixing θ_f are generated through RG equations

NLSP : stau-like slepton
$$ilde{\ell} =$$

$$f=e,\mu,\tau$$

NLSP : stau-like slepton
$$\ ilde{\ell} = \sum \ C_f ilde{f} \ | \ ilde{f} = \cos heta_f ilde{f}_L + \sin heta_f ilde{f}_R$$

 y_{ν} structure is constrained

by cosmology, and leads to

distinctive signatures

Neutrino Yukawa

Neutrino Yukawa in terms of "observables" (Casas-Ibarra parametrization)

$$\lambda_{\alpha j} = v^{-1} \left[\sqrt{M} R \sqrt{m} U^\dagger
ight]_{\alpha j}$$
 J. A. Casas and A. Ibarra, NPB (2001)

Complex Orthogonal matrix

$$R = \begin{pmatrix} \widetilde{c}_{13}\widetilde{c}_{12} & \widetilde{c}_{13}\widetilde{s}_{12} & \widetilde{s}_{13} \\ -\widetilde{c}_{23}\widetilde{s}_{12} & \widetilde{c}_{23}\widetilde{c}_{12} - \widetilde{s}_{23}\widetilde{s}_{13}\widetilde{s}_{12} & \widetilde{s}_{23}\widetilde{c}_{13} \\ \widetilde{s}_{23}\widetilde{s}_{12} - \widetilde{c}_{23}\widetilde{s}_{13}\widetilde{c}_{12} & -\widetilde{s}_{23}\widetilde{c}_{12} - \widetilde{c}_{23}\widetilde{s}_{13}\widetilde{s}_{12} & \widetilde{c}_{23}\widetilde{c}_{13} \end{pmatrix}$$

9 complex angles! $z_{ij} = x_{ij} + \sqrt{-1} y_{ij}$

No constraint from ν oscillation exp.

Cosmology can set constraints on the complex angles!

Neutrino Yukawa

Requirement to solve Li7 prob. Sufficient longevity of $\tilde{\ell}$

 $\tilde{\ell}$ lifetime is sensitive to $\tilde{\ell}$ mixing, and indirectly to y_{ν}

Larger M_1 corresponds to larger y_{ν} , and leads to large $\tilde{\ell}$ mixing which reduces $\tilde{\ell}$

BBN puts bounds on M_1 and y_{ν} structure via $\tilde{\ell}$ lifetime

Baryon asymmetry

Necessary to take into account the flavor effect for precise understanding

Flavor effect for leptogenesis Off-diagonal element of Neutrino Yukawa ℓ flavor mixing and ℓ lifetime

BR(LFV decay) vs M_1

Prediction in light of Higgs, DM, BBN, baryon asymmetry in the CMSSM with RH neutrino

☑ Tiny BR for tau LFV decay

Tiny flavor mixing of stau is required for the slepton lifetime to be long enough

\square M_1 lower bound from baryon asymmetry

 $M_1 \propto$ (neutrino Yukawa), and small Yukawa cannot generate sufficient lepton number

Distinctive signatures at collider

Mass of the lightest neutralino [GeV]

- oxdots Clear linear relation of $m_{\tilde{q}}$ and $m_{\tilde{g}}$ to $m_{\widetilde{\chi}_1^0}$ (from $\delta m < m_{\tau}$)

 Accurate prediction of $m_{\tilde{q}}$ and $m_{\tilde{g}}$ by measuring $m_{\tilde{\ell}}$ (= $m_{\widetilde{\chi}_1^0}$)
- \square (# of track of long-lived slepton) \simeq (# of missing E_T)
- ✓ Light stop $m_{\tilde{t}} \sim 1 \text{ TeV}$ due to large A_0 to achieve $m_H = 125 \text{GeV}$

Summary

New physics candidate: CMSSM

- Gauge unification
- Hierarchy problem
- · etc.

 $\tilde{\ell}$ - $\tilde{\chi}$ coannihilation

DM abundance

 $\delta m < m_{\tau}$

- Li7 problem
- Higgs mass
- · muon g-2

Summary

New physics candidate: CMSSM

- Gauge unification
- Hierarchy problem
- · etc.

Flavored SUSY leptogenesis sets lower bound on M_1 , and BBN sets the upper one

a unique prediction for CLFV

Seesaw mechanism

- baryon asymmetry
- neutrino mass

 $\tilde{\ell}$ - $\tilde{\chi}$ coannihilation

DM abundance

 $\delta m < m_{\tau}$

- · Li7 problem
- Higgs mass
- · muon g-2

CMSSM coannihilation scenario with seesaw mechanism can describe our universe!

Backup slides

Coannihilation mechanism

Mass degeneracy of LSP and NLSP reduces the relic density of LSP

$$m_{\widetilde{\chi}} \simeq m_{\widetilde{\ell}}$$

Large rate of $\tilde{\ell} + \tilde{\ell} \leftrightarrow SM + SM$

Long chemical equilibrium of SUSY and SM particles

DM relic abundance

DM relic abundance PLANCK 2015 results

$$0.1126 \le \Omega_{\rm DM} h^2 \le 0.1246$$

Freeze out of total SUSY density@ $T \simeq m_{\tilde{\chi}}/25$

$$n \equiv n_{\tilde{\chi}} + n_{\tilde{\ell}^-} + n_{\tilde{\ell}^+}$$

CMSSM parameters $(M_{1/2}, m_0, A_0, \tan \beta,$ etc.) are constrained by this condition

Note: Slepton density is not frozen yet!

Slepton density

Kinetic equilibrium with SM sector through SUSY-SM scattering

$$\tilde{\ell}\gamma \leftrightarrow \tilde{\chi}\tau, \quad \tilde{\ell}\gamma \leftrightarrow \tilde{\chi}\mu,
\tilde{\ell}\tau \leftrightarrow \tilde{\chi}\gamma, \quad \tilde{\ell}\mu \leftrightarrow \tilde{\chi}\gamma, \quad \tilde{\ell}e \leftrightarrow \tilde{\chi}\gamma$$

Slepton density continues to decrease as long as being in kinetic equilibrium

$$n_{\tilde{\ell}^-} = \frac{n_{\tilde{\ell}_1^-}}{n_{\tilde{\chi}_1^0}} \frac{n_{\tilde{\chi}_1^0}}{n} n$$
$$= n \frac{e^{-\delta m/T}}{2\left(1 + e^{-\delta m/T}\right)}$$

Slepton density

Kinetic equilibrium with SM sector through SUSY-SM scattering

$$\tilde{\ell}\gamma \leftrightarrow \tilde{\chi}\tau, \quad \tilde{\ell}\gamma \leftrightarrow \tilde{\chi}\mu,
\tilde{\ell}\tau \leftrightarrow \tilde{\chi}\gamma, \quad \tilde{\ell}\mu \leftrightarrow \tilde{\chi}\gamma, \quad \tilde{\ell}e \leftrightarrow \tilde{\chi}\gamma$$

Kinetic freeze-out temperature strongly depends on slepton mixing

Large density is required for solving Li7 (Li6) problem

Upper bound on slepton mixing

Upper bound on Majorana mass

Leptogenesis

To correctly constrain each component of $(y_{\nu})_{\alpha i}$, it's important to take into account spectator and flavor effects

$$\begin{split} \frac{dY_{N_1}}{dz} &= -\frac{z}{sH(z=1)} \left(\frac{Y_{N_1}}{Y_{N_1}^{eq}} - 1 \right) \left[\gamma_D + 2\gamma_{Ss} + 4\gamma_{St} \right] \\ \frac{dY_{\Delta_i}}{dz} &= -\frac{z}{sH(z=1)} \left\{ \left(\frac{Y_{N_1}}{Y_{N_1}^{eq}} - 1 \right) \epsilon_{1i} \gamma_D + K_i^0 \sum_j \left[\frac{1}{2} \left(C_{ij}^l + C_j^H \right) \gamma_D \right. \right. \\ &\left. + \left(\frac{Y_{N_1}}{Y_{N_1}^{eq}} - 1 \right) \left(C_{ij}^l \gamma_{S_s} + \frac{C_j^H}{2} \gamma_{S_t} \right) + \left(2C_{ij}^l + C_j^H \right) \left(\gamma_{S_t} + \frac{\gamma_{S_s}}{2} \right) \right] \frac{Y_{\Delta_i}}{Y_l^{eq}} \right\} \end{split}$$

- \blacksquare $Y_i = n_i/s$ (s: entropy density)

Leptogenesis

- Conversion rate of flavored L asymmetry onto flavored (B L) asymmetry

$$\begin{split} \frac{dY_{\Delta_i}}{dz} &= -\frac{z}{sH(z=1)} \Bigg\{ \left(\frac{Y_{N_1}}{Y_{N_1}^{eq}} - 1 \right) \epsilon_{1i} \gamma_D + K_i^0 \sum_j \left[\frac{1}{2} \left(\frac{C_{ij}^l + C_j^H}{T_i^H} \right) \gamma_D \right. \\ &+ \left(\frac{Y_{N_1}}{Y_{N_1}^{eq}} - 1 \right) \left(\frac{C_{ij}^l}{Y_{S_s}} + \frac{C_j^H}{2} \gamma_{S_t} \right) + \left(2 \frac{C_{ij}^l}{T_i^H} + C_j^H \right) \left(\gamma_{S_t} + \frac{\gamma_{S_s}}{2} \right) \right] \frac{Y_{\Delta_i}}{Y_l^{eq}} \Bigg\} \end{split}$$

- Conversion rate of spectator contribution onto flavored (B L) asymmetry

Leptogenesis

- Flavored decay parameter determined by structure of neutrino Yukawa
- Flavored CP asymmetry

$$\begin{split} \frac{dY_{\Delta_{i}}}{dz} &= -\frac{z}{sH(z=1)} \Bigg\{ \left(\frac{Y_{N_{1}}}{Y_{N_{1}}^{eq}} - 1 \right) \epsilon_{1i} \gamma_{D} + \underbrace{K_{i}^{0}}_{j} \sum_{j} \left[\frac{1}{2} \left(C_{ij}^{l} + C_{j}^{H} \right) \gamma_{D} \right. \\ &+ \left(\frac{Y_{N_{1}}}{Y_{N_{1}}^{eq}} - 1 \right) \left(C_{ij}^{l} \gamma_{S_{s}} + \frac{C_{j}^{H}}{2} \gamma_{S_{t}} \right) + \left(2C_{ij}^{l} + C_{j}^{H} \right) \left(\gamma_{S_{t}} + \frac{\gamma_{S_{s}}}{2} \right) \right] \underbrace{Y_{\Delta_{i}}}_{Y_{l}^{eq}} \Bigg\} \end{split}$$

Each component of neutrino Yukawa strongly affects the final baryon asymmetry