

SI 2019 23 August, 2019

Inflation & Cosmology III

- primordial black hole and gravitational waves -

Misao Sasaki

YUKAWA INSTITUTE FOR THEORETICAL PHYSICS Kavli IPMU, University of Tokyo YITP, Kyoto University LeCosPA, National Taiwan University

PBH Cosmology!

cosmic spacetime diagram

cosmic spacetime diagram

observational constraint on inflation

There are some constraints on small scales, but quite weak.

observational constraint on inflation

There are some constraints on small scales, but quite weak.

fraction β that turns into PBHs

for Gaussian probability distribution

• When $\sigma_M << \delta_c$, β can be approximated by exponential:

$$\beta \approx \sqrt{\frac{2}{\pi}} \frac{\sigma_M}{\delta_c} \exp\left(-\frac{\delta_c^2}{2\sigma_M^2}\right)$$

effect or non-Gaussianity

Non-Gaussianity can increase ($f_{NL}>0$) or decrease ($f_{NL}<0$) the PBH adundances, substantially if $\sigma(M_H)<<1$.

Young & Byrnes, 1307.4995

Formation of PBHs

Curvature perturbation to PBH

> gradient expansion/separate universe approach

 $6H^{2}(t,x) + R^{(3)}(t,x) = 16\pi G\rho(t,x) + \cdots$ Hamiltonian constraint (Friedmann eq.)

Spins of PBHs are expected to be very small

simple 2-field model

• Starobinsky R^2 gravity plus a scalar field χ , non-minimally coupled to gravity: (\rightarrow scalaron ϕ)

$$S_{J} = \int d^{4}x \sqrt{-g} \left\{ \frac{M_{\rm Pl}^{2}}{2} \left(R + \frac{R^{2}}{6M^{2}} \right) - \frac{1}{2} g^{\mu\nu} \partial_{\mu}\chi \partial_{\nu}\chi - V(\chi) - \frac{1}{2} \xi R \chi^{2} \right\}$$

• for $V(\chi)$ we pick the small-field form:

$$V(\chi) = V_0 - \frac{1}{2}m^2\chi^2 + \cdots$$

• ξ -term is the non-minimally coupled term to stabilize the initial condition problem. A version of SSB in χ direction.

- Field χ plays the role of inflaton at the 2nd stage.

Curvature Perturbation Power Spectrum

GWs from Large Scalar Curvature Perturbation

GWs can capture PBHs!

Induced GWs

• The equation of motion for the tensor perturbation with source

$$h_{\mathbf{k}}'' + 2\mathcal{H}h_{\mathbf{k}}' + k^{2}h_{\mathbf{k}} = \mathcal{S}(\mathbf{k},\eta) \sim \int d^{3}l \ l_{i}l_{j}\Phi_{\mathbf{l}}(\eta)\Phi_{\mathbf{k}-\mathbf{l}}(\eta)$$

• The quantity we want to calculate is

• Φ may not be Gaussian. So consider a non-Gaussianity:

GWs test PBH=DM!

Saito & Yokoyama,arXiv:0912.5317

Effects of non-Gaussianity

Cai, Pi & MS, '18

- Up: $F_{NL} > 0$, and we fix the PBH abundance to be 1.
- Down: $F_{NL} < 0\,$, and we fix the peak amplitude to be $\,\mathscr{A}_{\mathscr{R}} = 10^{-2}\,$
- Gray curve: LISA
- Frequency: PBH window <—> LISA band
- Coincidence, but fortunate for our universe.

Summary

• 2-field inflation models can provide PBH-as-CDM scenario.

 $N_1 \sim 35 - 40$ after CMB scale left the horizon $\longrightarrow M_{\rm PBH} \sim 10^{19} - 10^{22} {\rm g}$

• GWs are generated from large scalar perturbations:

 k^3 - slope, multiple peaks, cutoff

- If PBHs = CDM, induced GWs must be detectable by LISA, indep of non-Gaussianity f_{NL} .
- Conversely if LISA doesn't detect the induced GWs, it constrains the PBH abundances on mass range M_{PBH} ~ 10¹⁹ -10²²g where no other experiment can explore.