Muon g-2 and Supersymmetry

Summer Institute 2019 Gangneung, Korea Aug 19, 2019

Hyung Do Kim (Seoul National University)

with R Dermisek, N. McGinnis and Jae-hyeon Park

The Standard Model (~1967) Higgs discovery (~2012)

No evidence of new physics

magnetic dipole moment of muon

$$\hat{\mu} = g_s(\frac{e}{2m})\hat{s}$$

electron, muon $g_s \simeq 2$

proton $g_s \simeq 5.6$

neutron $g_s \simeq -3.3$

Lande g factor

Anomalous magnetic dipole moment of muon

Dirac moment (1928) $\mu = (1+a)\frac{e\hbar}{2m} = g_s \frac{e\hbar}{4m}$ $1+a = \frac{g_s}{2} \longrightarrow a = \frac{g_s-2}{2}$ Pauli moment

radiative correction (1948) $\longrightarrow a = \frac{\alpha}{2\pi} = 0.00116\cdots$

Standard Model contributions to a_{μ} ... updates \rightarrow 3.6 σ

	Value $(\times 10^{-10})$ units
QED $(\gamma + \ell)$	$11658471.8951 \pm 0.0009 \pm 0.0019 \pm 0.0007 \pm 0.0077_{\alpha}$
HVP(lo) Davier 17	692.6 ± 3.33
HVP(lo)KNT2017	693.9 ± 2.6
HVP(ho) KNT2017	-9.84 ± 0.07
HLbL Glasgow \checkmark	—— This is a fancy guess; it will improve $\longrightarrow 10.5 \pm 2.6$
EW	15.4 ± 0.1
Total SM Davier17	11659181.7 ± 4.2
Total SM KNT17	11659182.7 ± 3.7
	BNL E821 δa_{μ} (Expt) = ± 6.3

from David Hertzog

Contribution	Value [10 ⁻¹¹]	Date	Reference
a^{QED}_{μ}	116584718.971 ± 0.07	18 December 2017	[4]
a_{μ}^{EW}	153.6 ± 1.0	9 September 2013	[7]
a^{HVP}_{μ}	6846.8 ± 24.2	25 July 2018	[8]
a^{HLbL}_{μ}	98 ± 26	19 September 2016	[9]
a^{SM}_{μ} total	116591820.4 ± 35.6	10 November 2018	[10]

from David Susic

Electroweak contribution to muon g-2

from David Susic

Experiment

from David Susic

$$\Delta a_{\mu} = (27 \pm 7) \times 10^{-10}$$

 $\frac{3.7\sigma}{(3.5\sigma\sim3.9\sigma)}$

FNAL E989 Run I over, Run II soon $0.54 \mathrm{ppm} \rightarrow 0.14 \mathrm{ppm}$

 $7\sigma \sim 8\sigma$ expected

scattering of the lepton by an external magnetic field

$$e\bar{u}(p_{\text{out}})[\gamma^{\mu}F_{1}(q^{2}) + \frac{i}{2m}\sigma^{\mu\nu}q_{\nu}F_{2}(q^{2})]u(p_{\text{in}})A_{\mu}^{\text{ext}}(q^{2})$$

$$Gordon \ \text{identity} \downarrow$$

$$e\bar{u}(p_{\text{out}})[\frac{p^{\mu}}{2m}F_{1}(q^{2}) + \frac{i}{2m}\sigma^{\mu\nu}q_{\nu}F_{1}(q^{2}) + F_{2}(q^{2})]u(p_{\text{in}})A_{\mu}^{\text{ext}}(q^{2})$$

$$q^{2} \rightarrow 0 \qquad \downarrow$$

$$-\frac{e}{2m}(1 + F_{2}(0))\psi^{\dagger}\vec{\sigma} \cdot \vec{B}\psi$$

$$a_{\mu} = F_{2}(0) \qquad \longrightarrow \qquad \frac{e}{2m}aF_{\mu\nu}\bar{\psi}\sigma^{\mu\nu}\psi$$

Electroweak contribution to muon g-2

definition of a $10^{-9} = 10^{-3} \times 10^{-3} \times 10^{-3}$ loop factor $\bigvee \qquad \bigvee \qquad \checkmark$ new physics scale $a^{\text{new}} \sim \frac{g^2}{32\pi^2} \frac{m_{\mu}}{\Lambda} \frac{m_{\mu}}{\Lambda}$

to explain the anomaly of muon g-2 $\Lambda \sim 100 \text{ GeV}$ for $\frac{eg^2}{32\pi^2} \frac{m_{\mu}}{\Lambda^2} F_{\mu\nu} \bar{\psi} \sigma^{\mu\nu} \psi$

e.g. smuon and gaugino/higgsino in supersymmetry

frequently cited expression for supersymmetry smuon diagram

$$a_{\mu}^{\rm SUSY} = \pm 13 \times 10^{-10} \left(\frac{100 \text{ GeV}}{M_{\rm SUSY}}\right)^2 \tan\beta$$

typically 100 GeV to 500 GeV smuon

large $\tan\beta \longrightarrow 1 \text{ TeV} \text{ smuon}$

can be consistent with muon g-2 anomaly

Is the Standard Model ruled out by muon g-2?

Is split supersymmetry ruled out by muon g-2?

What is the largest smuon mass or bino mass to be consistent with muon g-2?

(For large mu, wino and higgsino diagrams are suppressed by mu)

$$m_{LR}^2 = m_\mu (A - \mu \tan \beta)$$

Large mixing or maximal mixing of smuon would be interesting as there is no suppression of muon mass

$$A \sim \frac{M_{\rm SUSY}}{m_{\mu}} M_{\rm SUSY} \longrightarrow m_{LR}^2 \sim M_{\rm SUSY}^2$$

smuon mass matrix

$$m_L^2 = m_R^2 \qquad r = \frac{|m_{LR}^2|}{m_L^2}$$
$$\begin{pmatrix} m_L^2 & m_{LR}^2 \\ m_{LR}^2 & m_R^2 \end{pmatrix} = \frac{M^2}{1-r} \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}$$
smuon mass eigenvalue
$$M^2, (\frac{1+r}{1-r})M^2$$

bino mass $M_1 = M$

 $M_1=m_{ ilde{\mu}_1}\ll m_{ ilde{\mu}_2}$ for r close to 1

Muon suppression once or twice?

$$\Delta a_{\mu}(\tilde{\mu}_L, \tilde{\mu}_R, \tilde{B})$$
 :

mass insertion approximation

$$= \frac{\alpha_Y}{4\pi} \frac{m_{\mu}^2 M_1 \mu}{m_{\tilde{\mu}_L}^2 m_{\tilde{\mu}_R}^2} \tan\beta \cdot f_N \left(\frac{m_{\tilde{\mu}_L}^2}{M_1^2}, \frac{m_{\tilde{\mu}_R}^2}{M_1^2}\right)$$
$$= \frac{\alpha_Y}{4\pi} m_{\mu} \frac{M_1 m_{\tilde{\mu}_L R}^2}{m_{\tilde{\mu}_L}^2 m_{\tilde{\mu}_R}^2} f_N \left(\frac{m_{\tilde{\mu}_L}^2}{M_1^2}, \frac{m_{\tilde{\mu}_R}^2}{M_1^2}\right),$$

$$\frac{m_{\mu}}{(100 \text{ GeV})^2} = \frac{1}{M}$$

smuon 10 TeV ~ 100 TeV can be possible $M \sim (\frac{100 \text{ GeV}}{m_{\mu}})100 \text{ GeV} \sim 100 \text{ TeV}$

Maximal mixing of smuon (when r is close to 1)

 $a_{\mu}(\text{SUSY}) = 10^{-9} \longrightarrow M \sim 5 \text{ TeV}$

$$M \sim \frac{5}{\Delta a_{\mu} \times 10^9} \text{ TeV}$$

Threshold correction to muon Yukawa coupling after integrating out smuon

$$y_{\rm UV}v_d(1+\Delta) = m_\mu \qquad \qquad y_\mu^{\rm IR} = y_\mu^{\rm UV}(1+\Delta)$$

$$m_{LR}^2 = y_{\rm UV} v_d A = \frac{m_\mu}{1+\Delta} A.$$

$$A < 0, \Delta > 0, \Delta a_{\mu} > 0$$

 $|\Delta|>1\to A>0, \Delta<0, 1+\Delta<0, \Delta a_{\mu}>0$ both sign of A (or mu) allowed

spectrum maximizing the loop function decouple for r ightarrow 1 $m_{ ilde{\mu}_2}$ $m_{ ilde{\mu}_2}$ M_1 $m_L=m_R$. $m_L = m_R$ M_1 $m_{ ilde{\mu}_1}$ previous one was not the optimal spectrum bino=light smuon

$$\begin{array}{cccc} m_{\tilde{\mu}_{1}} & M & & \\ & M_{1} & M & & \\ & M_{1} & M & & \\ & m_{\tilde{\mu}_{2}} & \sqrt{\frac{1+r}{1-r}}M & & \text{decouple for } r \rightarrow 1 \\ & & & \\ & &$$

When r is small, the mass insertion approximation is good

When r is close to 1, heavy smuon diagram decouples

Threshold correction to muon Yukawa coupling

Vacuum stability

When Hu and Hd does not mix and Hd is very heavy, the electroweak vacuum can live long enough

Difference of large A and large mu (tan beta)

Detailed study is in progress

Summary

Maximal smuon mixing allows the explanation of muon g-2 anomaly in terms of heavy smuon (a few TeV)

light smuon (and bino) is as heavy as 3(4.5) TeV for $1(2)\sigma$ explanation of Δa_{μ}

No discovery of smuon up to 3 or 4 TeV does not rule out the supersymmetric explanation of muon g-2 anomaly

one power from the definition, the other power from smuon mass mixing

smuon mass mixing needs not be suppressed

$$M \sim \frac{M_Z^2}{m_\mu}$$

heavy smuon can explain muon g-2 anomaly