A radiation tolerant wireless Internet of Things (IoT) platform for on-field sensor data acquisition

Salvatore Danzeca (EN/SMM-RME)

Title break down

A radiation tolerant

- In the accelerator tunnels and experiments there is a radiation field that affects all the electronics installed
- The electronic systems should be "qualified" to be installed in the LHC tunnel and in the injectors
- The same happen for the electronics in the Space and in the Nuclear power plants

Wireless

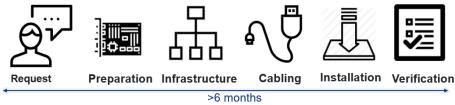
- Communication without cables
- Possibility to have only batteries as main source of power

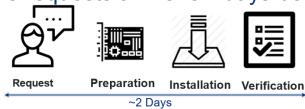
Internet of Things

- The Internet of things (IoT) describes the digital connection of objects to the Internet in order to achieve total CONTROL and MONITOR such objects.
- Summarizing: Making the objects SMART and CONNECTED

platform for on-field sensor data acquisition

- Standardized Hardware board that can be used as base system for sensors acquisition
- Can host several applications and it is not application-specific





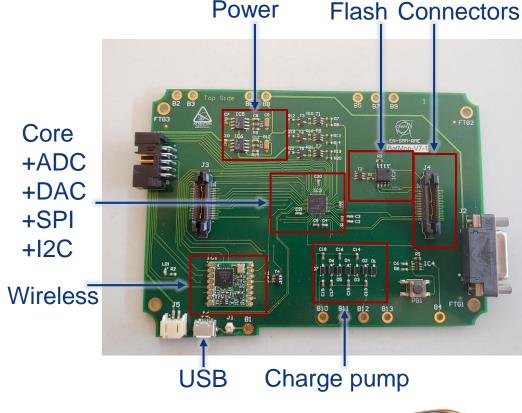
The origin

- Key idea is born around a CERN development called RadMon: Radiation Monitor for CERN electronics
 - RadMon is a radiation tolerant device based on commercial components well qualified under irradiation
 - RadMon is a system of cabled devices with a well defined infrastructure inside the CERN (device management, gateways, logging etc..)
 - More than 500 devices are installed currently in the LHC

- What happen if one user want to monitor the radiation level in a place where RadMon are not available?
 - We have mainly only the technical stop (few days) for the installation
 - Usually the requests arrive few days before the access...

The BatMon and the proposal

- The BatMon: a BATttery radiation MONitor
 - Monitor and control radiation sensors
 - Modular
 - Battery powered
 - Reliable under radiation
 - Wireless communication over km range
 - Well known standard for IoT (LORAWAN selected)
 - Strong collaboration with IT/CS for the choice of the supported link
 - Same form factor as the actual RadMon to reduce the cost
 - The first wireless radiation tolerant CERN development
- Proposal: The <u>radiation tolerant wireless Internet of Things (IoT)</u> <u>platform for on-field sensor data acquisition</u>
 - Inherit all the features of the BatMon
 - Remove the sensor part and keep only the intelligent wireless core
 - Provide to the users/companies a platform independent from any application
 - Make it multipurpose
 - Make it configurable
 - Easy of installation
 - Support other wireless standard such as the ZigBee but also WiFi
 - Allowing mesh network sensor and high speed data communication
 - Make it miniaturized to make it embeddable in any other system

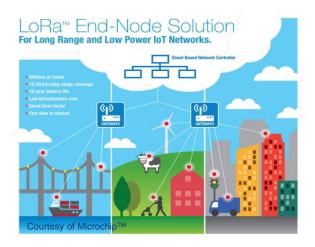


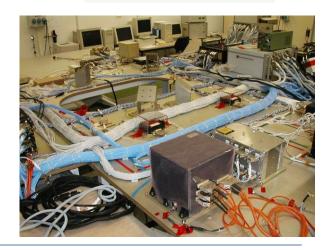
Specification and possibilities

- Based on commercial components
 - Low cost
- Low power development
- Tested under irradiation
 - Components have been selected for radiation hardness and low power
- Availability of several on-board peripherals
 - Very large Flash Storage system 128Mbit
 - Analog to Digital Converter (ADC)
 - Digital to Analog Converter (DAC)
 - Serial Peripherals Interface (SPI)
 - Inter-Integrated Circuit communication (I2C)
 - LORA wireless communication
 - Multi supply voltage +5V and +3.3V
 - Charge Pump capable of generating up to +20V
- Just few examples of sensors immediately adaptable:
 - Light sensor via ADC
 - Temperature via SPI, I2C, ADC
 - Voltage/Current monitor via ADC, SPI
 - Humidity via ADC
 - Position via ADC, SPI,
 - Motor/actuator via DAC

Radiation tests and performances

- All the components used has been tested in a proton facility to verify their suitability
- Mitigation strategies to reduce the radiation effects have been implemented in both hardware and software
- Performance tests are carried out directly in a controlled radiation environment
- CHARM irradiation facility as testbench
- Currently testing three devices
- After one week of irradiation all the device all still functional.
- They have cumulated the amount of dose expected in 10 years in most of the LHC regions where electronics is installed
- More than 20 mt of effective concrete shielding between the gateway and the devices!
- We can communicate easily between building 18 and R2.





Possibilities outside CERN

- The platform if can work under radiation can work even more reliably in standard conditions.
 - In this case the applications are very wide
- In nuclear power plants it can be used for several application also close to the reactor due to its radiation tolerance
 - Leak detection
 - Water flow
 - Etc...
- For Space applications
 - Low power feature can be very attractive
 - Radiation tolerance is mandatory
 - Being low cost can be a big advantage
 - Target is sensors placed far away from each other -> no need of cabling
 - ESA is searching for technologies suitable for this kind of application: <u>link</u>

Conclusions

- The radiation tolerant wireless IoT platform inherits all the features and strategies applied on a CERN development to make it robust in a very harsh environment allowing kilometres range communication
- It is reliable under radiation, thus reliable in a standard environment for any kind of application
- It is not application specific and very easy to adapt to any scope.
- The next important steps are:
 - Miniaturization
 - Checking new wireless protocol to be implemented: i.e WiFi and ZigBee
- IoT is an essential driver of innovation.
- Will allow to gather more data and being more effective
- We can say we are currently moving towards a "SMART IoT Accelerator"
- Let's think already beyond this scope

Thank you