

Analysing tool for residual gas spectra

B. Jenninger, A. Benoit, V. Baglin, P. Chiggiato (CERN)

F. Mateo, E. Soria, J. Gómez (IDAL)

- 1. Why
- 2. What / Idea
- 3. Who / What
- 4. Next steps
- 5. Possible use outside HEP

Why / Problem

Residual gas analysers used since decades

Still today: No analysing tool available that covers our needs

Idea

Software

Analysing tool for residual gas spectra

Adapted to the needs in Ultra-High Vacuum (UHV)

- **UHV-dedicated fragmentation pattern libraries**
- Specific features for simulating, analysing and handling spectra

Simulations

(partial pressures and fragmentation patterns)

automatic

manually

Include analyser-specific parameters (mass resolution, sensitivity, noise, offset ...)

Case studies, training of personal ...

Iterative deconvolution

(in logarithmic scale)

Deconvolution: Identify composition and determine

partial pressures

Both need rapid

Machine-Learning

simulation of thousands of mass spectra

Recognition of residual gas composition by pattern Extensive training with random simulated spectra

Comparison: measured and simulated spectra

Variation of partial pressures -> simulate spectrum -> determine error

Search: Global Minimum Integral Error

Who / what

Iterative deconvolution & reconstruction

Prototype application in LabVIEW

Idea & driving project **TE-VSC**

Machine-Learning

(feasibility study, collaboration KE3129-TE)

Intelligent Data Analysing Laboratory

(University of Valencia, Spain)

Very fast reconstruction with identified components

Can be applied to a full library for identification (in combination with **indicators**)

Iterations: 80000 simulations + error calculation: 6 seconds (80 species, 5 iterations, 10 decades, 20 pp-steps per decade)

Ance between the control of the cont

Training sets: 50000 random spectra

Learning rate: 0.1 x presentation of test set: 200

Test set: another 50000 random spectra

Impressive in identification of complex molecules

Iterative tool is required to determine partial pressures

Further steps

Towards a real-world application

Iterative deconvolution:

- Enhanced pre- post-analysis treatments
- → Large & multiple fragmentation pattern libraries (few hundred species)
- → Include calibration features
- Subtraction of species from pre-treated measured spectra

Machine-Learning:

- Implement basic pre- post-analysis treatments
- Adapt architecture for large libraries
- ➡ Include variable noise cut-off limits in training
- Explore possibility to identify components that are not in library

Combination in a web-based application:

Further steps

Web-based platform

Potential use outside HEP

- Universities and institutes with research facilities using high quality vacuum
- ⇒ Semi-conductor industries (process control ...)

• • •

Basically everywhere where residual gas analysers are used

