Radiation spectra in LHC phase II

Effect on superconducting materials

R. Flükiger

Insulator irradiation 2.12.2009

Outlinie

Circulation for Phase I New results for Phase II Effect of irradition on superconductors * neutrons * protons Conclusion

Introduction

Compound	T _c	B _{c2} (0)	x
	(K)	(T)	(nm)
NbTi	10	14	6.3
Nb₃Sn	18	28	4.2
Nb ₃ AI	19	33	
MgB ₂	39	35 - 65	5
3i-2212	92	anisotropy	<2nm (//>p)
/-123	95	anisotropy	< 2 nm (//>p)

Expected Radiation Load on the LHC Quadrupoles

LHC Upgrade Phase I

Calculated 2008 for the Quadrupole Q2a Inner Winding by:

Francesco Cerutti , CERN Alessio Mereghetti, CERN Marco Mauri, CERN Elena Widmer, CERN

Peak Fluence during Phase 1 Upgrade (2.5 x of 10³⁴ cm⁻² s⁻¹)

Quadrupoles Q1, Q2a, Q2b, Q3

Radiation spectrum at Q2a: 35m from Collision Point

Photons	87 %	
Neutrons	6 %	100.0 %
Protons	0.15 %	2.5 %
Electrons	3.5 %	
Positrons	2.5 %	
Pions (+/-)	0.4 %	

Neutrons : main source of damage to the superconductors. Protons: smaller, but not negligible effect Photons: effect on insulators small effect on s.c. expected, more data necessary

Peak Fluence, LHC Upgrade Phase II (10³⁵ cm⁻² s⁻¹)

Radiation spectrum at Q2a: 35m from Collision Point

Aperture	200mm	130mm	200mm	130 mm
Neutrons	4.82	4.04	100.0%	100.0%
Protons	0.14	0.13	2.8%	3.1%
Photons	88.93	89.00		
Pions+	0.19	0.19		
Pions-	0.26	0.25		
Electrons	4.31	4.63		
Positrons	2.23	2.45		

Neutron spectrum in the inner winding of Quadrupole Q1

The neutron energy fully covers the possible interval, down to thermal energies

7

Neutron fluence in the inner winding of Quadrupoles (Phase 1 Upgrade)

Peak Fluence at Quadrupole Q2a: 2.5×10^{17} n/cm² after 10 years (Phase I upgrade)

For NbTi: no effect

```
Later, for Nb<sub>3</sub>Sn wires:
Even after 10 years of operation, peak fluence remains below > 1 \times 10^{18} \text{ n/cm}^2.
```

Different fluences for Q1 - Q3: the operation conditions of these quadrupoles may have to be individually modified with time, for maintaining a constant field.

Expected Radiation Load on the LHC Quadrupoles

LHC Upgrade Phase II

Calculated 2009 for the Quadrupole Q2a Inner Winding by:

Francesco Cerutti, CERN Alessio Mereghetti, CERN

Neutron spectrum in the inner coil of Q2a at peak location

Proton spectrum in the inner coil of Q2a at peak location

Photon spectrum in the inner coil of Q2a at peak location

Phase II Aperture 130 / 200 mm

	Maximum number of particles per collision	Particle Energy
	φ(E) · E [cm⁻²]	E [MeV]
Neutrons	~10 / ~6	~ 1/ ~1
Protons	~ 0.01 / < 0.01	~ 100 / ~100

Peak Fluence, LHC Upgrade Phase II (10³⁵ cm⁻² s⁻¹)

Radiation spectrum at Q2a: 35m from Collision Point

Aperture	200mm	130mm	200mm	130 mm
Neutrons	4.82	4.04	100.0%	100.0%
Protons	0.14	0.13	2.8%	3.1%
Photons	88.93	89.00		
Pions+	0.19	0.19		
Pions-	0.26	0.25		
Electrons	4.31	4.63		
Positrons	2.23	2.45		

Peak fluence in the inner Q2a for 200 mm aperture

Phase II: Integrated luminosity: 20'000 fb⁻¹

Fluence expected for phase II

130 mm aperture: 1 x 10¹⁸ n/cm² 200 mm aperture: 5 x 10¹⁷ n/cm²

Effect of irradiation on superconductors

Insulator irradiation 2.12.2009

R. Flükiger,¹⁹1989

Decrease of T_c with neutron irradiation

F. Weiss, R. Flükiger, W. Maurer, IEEE Trans. Magn., MAG-23(1987)976

Homogenenity of T_c distribution (Specific Heat Measurements)

B. Cort, G.R. Stewart, C.L. Snead, A.R. Sweedler, Phys. Rev. B24(1981)379

Decrease of T_c and lattice expansion after irradiation with various particles

Neutrons: Sweedler, 1978, H⁺, N²⁺: Schneider, 1982, ⁴He: Burbank, 1979, ³²S: Nölscher, 1985.

Binary Nb₃Sn wire (10'000 filaments)

Ti alloyed Nb₃Sn wires

Ta alloyed multifilamentary Nb₃Sn wires

Low maximum of I_c after proton irradiation

Insulator irradiation 2.12.2009

Binary Nb₃Sn wires:

Maximum of I_c : neutrons: 8 x 10¹⁷ n/cm²

protons: 6 x 10¹⁶ p/cm²

Ternary Nb ₃ Sn wires:		
Maximum of I _c :	neutrons: 2 x 10 ¹⁷ n/cm ²	
	protons: ?	

Still necessary to know behavior after proton irradiation, in spite of 3% fluence with respect to neutrons !

YBCO coated conductors

R. Fuger, M. Eisterer, H. Weber, Physica C, 468 (2008)

Irradiation Effects ISFRT, Erice, 12.9.2009

Neutron irradiation provides a clear distinction between the **low field region**, where Jc is limited by the grain boundaries, and the **high field region**, where depinning leads to dissipation.

Irradiation Effects ISFRT, Erice, 12.9.2009

Variation of T_c, Δ T_c and ρ_o of Y-123 films vs. proton fluence

Decrease of T_c : at lower fluences than for neutron irradiation

G.C. Xiong, H.C. Li, G. Linker. O. Meyer, Phys.Rev. B, 38(1988)240

Insulator irradiation 2.12.2009

Irradiation effects on MgB₂: Bulk samples and thin films

M. Putti, R.Vaglio, J.M. Rowell, Supercond. Sci. Technol. 21(2008)043001

Irradiation Effects ISFRT, Erice, 12.9.2009

Neutron irradiation of MgB2 (bulk and thin films) leads to:

- decrease of T_c
- enhancement of ρ
- Enhancement of axis c

Similarities between MgB2 and A15 type compounds

No data available about the effect of neutron irradiation on J_c: only the variation of B_{c2} was measured

A similar variation of J_c to A15 compounds is expected in MgB2 tapes and wires.

Irradiation Effects ISFRT, Erice, 12.9.2009

Proton irradiation of Bi-2223 tapes

B. Hensel, F.Marti, G. Grasso, R. Flükiger Trans. Appl. Supercond. 1996

Proton irradiation of Bi-2223 tapes

B. Hensel, F.Marti, G. Grasso, R. Flükiger. Trans. Appl. Supercond. 1996

Insulator irradiation 2.12.2009

Proton irradiation of Bi-2223 tapes

TEM micrograph of proton irradiated Bi-2223 tape

Conclusions

Neutron irradiation effects have been reviewed for various superconductors, and the their effects on the transport properties were presented for

- •Nb₃Sn wires, with and without additions
- •Nb₃Al wires
- YBCO coated conductors
- •MgB₂ bulk samples and thin films

Strong similarities have been observed for A15 compounds and MgB₂ caused by disorder (for A15 antisite effects, for MgB₂ not yet defined), leading to higher r_o and B_{c2} (or B_{irr}) YBCO : low fields: J_c is limited by the grain boundaries high fields: depinning leads to dissipation

The peak of Ic for proton irradiation occurs at lower fluences than for neutron irradiation

There is always a maximum of J_c and B_{c2} with increasing fluence , between $2x10^{21}$ n/m² (alloyed Nb₃Sn) and 0.9-1.15 x 10^{22} n/m²

General, for all analyzed systems, for irradiations at 300K: no or little decrease up to 1 x 10^{22} n/m². Data at 4.2K are expected to be similar, but no systematical data exist.