

Prospects to measure the di-Higgs production at the HL-LHC

Sebastian Olivares on behalf of the ATLAS di-Higgs prospects analysis group

Pontificia Universidad Católica de Chile

Thursday August 30th, 2018

- Recent efforts from ATLAS and CMS collaborations to measure the di-Higgs coupling with 13 TeV data independently, reached new limits of almost 10 times the SM expectation
- A proper measurement of the Higgs self-interaction term might unveil characteristics of the Higgs potential that would verify if the symmetry breaking is due to a SM-like Higgs sector
- The following slides presents an update of the prospects for the measurement of the di-Higgs production coupling with the ATLAS detector at the HL-LHC, using three different final states:
 - $\circ hh \to b\bar{b}b\bar{b}$ $\circ hh \to b\bar{b}\gamma\gamma$
 - $\circ \quad hh \to b\bar{b}\tau^+\tau^-$
- > A first attempt to combine these channels is given at the end

Please take into consideration that the results showed here are not approved by ATLAS yet

$hh \rightarrow b\overline{b}\gamma\gamma$

- Analysis used 14 TeV samples, with the upgraded detector geometry and performance functions, for the HL-LHC at $< \mu > = 200$
- Event selection:
 - At least two isolated photons ($p_T > 43 \text{ or } 30 \text{ GeV}$, $|\eta| < 2.37 \text{ or } 1.52 < |\eta| < 2.37$)
 - At least two b-tagged R = 0.4 jets ($p_T > 35$ GeV, $|\eta| < 2.5$)
 - $_{\odot}~$ Demand less than six jets with $p_{T}>35$ GeV, $|\eta|<2.5$
 - No isolated electrons with p_T > 30 GeV, $|\eta|$ < 2.37 or 1.52 < $|\eta|$ < 2.37
 - $_{\odot}~$ No isolated muons with $p_T>25~{\rm GeV}, 0.1<|\eta|<2.5$

Background estimation:

- $\circ~$ Main background arise from a continuum of multiple jets and photons that mimic the $b\bar{b}\gamma\gamma$ final state
- $\circ~$ A second smaller component come from single Higgs boson production
- Overlaps between samples are taken into account (e.g. $b\bar{b}\gamma\gamma$ vetoed by $b\bar{b}j\gamma$)

• Fit $m_{\gamma\gamma}$ spectrum

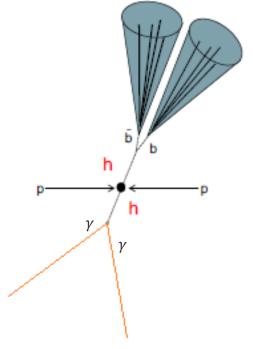
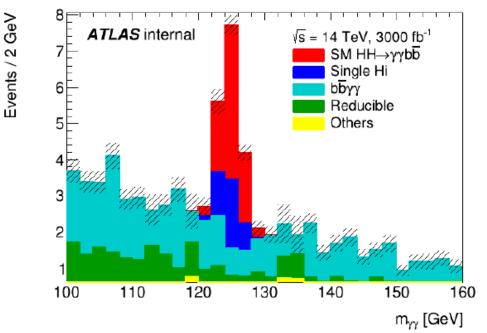



Fig.6: di-Higgs $b\bar{b}\gamma\gamma$ candidate.

Projections for HL-LHC


- In order to increase the available statistics in some samples, weighted events from all possible final state combinations are considered as last year's <u>PUB note</u>
- b-tagging algorithm (mv2c10) updated to the most recent ITk layout with improved c-jet rejection is considered
- The photon algorithm used has an improved resolution, with an efficiency of 60% for photons of 50 GeV and 85% above 150 GeV
- Multivariate discriminant BDT selection

 $hh \rightarrow b\overline{b}\gamma\gamma$

- BDT (from TMVA) discriminant is used to improve the separation of signal from background, using 21 variables that provided good discrimination with minimal correlation
- $\circ~$ BDT training done between the range 120 < $m_{\gamma\gamma}$ < 130 GeV to optimize sensitivity in signal region

5

Systematic uncertainties

 $hh \rightarrow b\overline{b}\gamma\gamma$

- Theory uncertainties taken from YR4, except for ggF QCD scale (which is assumed with a 100% uncertainty), conservative PDF scale factors used
- Experimental uncertainties taken from Run-2 analysis applying scale factors to HL-LHC
- Few percentage impact on final results

Limits

	significance
w/o syst.	2.34σ
with syst	2.29σ

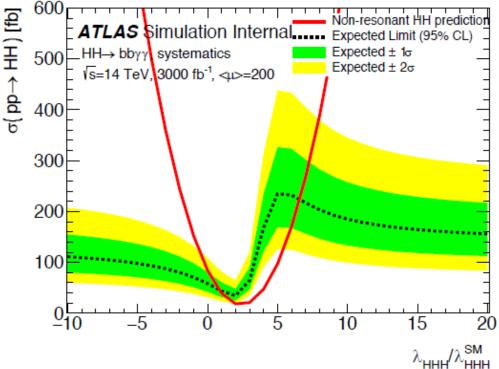


Fig.8: 95% CL upper limit on the cross-section as a function of the Higgs boson self-coupling ratio $\lambda_{hhh}/\lambda_{SM}$ with systematics.

Likelihood scan

- **BSM effects on the Higgs trilinear coupling** might 0 affects single-Higgs rates at higher order corrections
- Is not enough to look at inclusive rates if we want to check 0 the effects on single-Higgs observables
- To look for this effect, we can examine the log-likelihood Ο ratio of different values of λ_{hhh}

$$-\ln[\frac{\mathcal{L}(\lambda_{hhh})}{\mathcal{L}(\lambda_{hhh}^{SM})}]$$

- Likelihood (including NP) are fit to pseudo-data Ο independently
- Data has SM signal injected 0
- $\circ -1.03 < \frac{\lambda_{hhh}}{\lambda_{SM}} < 7.94 \text{ (w/o sys)}$ $\circ -1.23 < \frac{\lambda_{hhh}}{\lambda_{SM}} < 8.08$ (with sys)

 $hh \rightarrow bb\gamma\gamma$

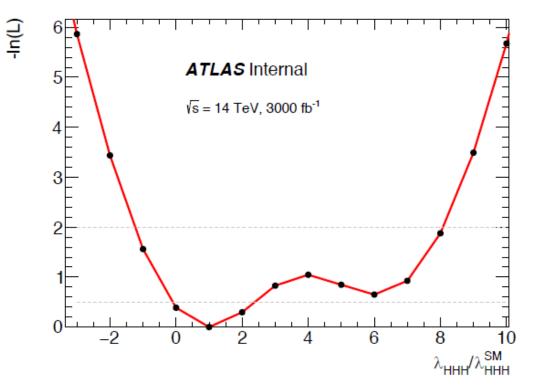
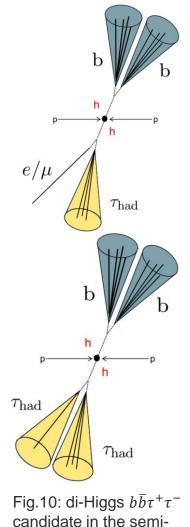


Fig.9: 95% CL upper limit on the log-likelihood ratio as a function of the Higgs boson self-coupling ratio $\frac{\lambda_{hhh}}{\lambda_{SM}}$ with systematics.

$hh ightarrow b\overline{b} au^+ au^-$

- Analysis is an extrapolation of the <u>Run-2 publication</u>, searching for non-resonant Higgs boson pair production
- Event selection:


$rightarrow p_T$ cut depends on the trigger used

- Two b-tagged jets associated with two taus or a tau + lepton (opposite electric charge)
- $\circ~$ Hadronic tau jets are distinguish from quark and gluon jets by using a BDT discriminant
- $\circ~$ Electron candidates are identified using a likelihood technique
- Only isolated muons and electrons are considered

Background estimation:

- Dominant background processes are $t\bar{t}$, QCD multi-jet and Z boson produced in association with heavy-flavour-jets
- SM Higgs boson production in association with a Z boson that subsequently decays into a $b\bar{b}$ final state, is an irreducible background

Fit BDT discriminants

leptonic and hadronic mode

$hh \rightarrow b\overline{b}\tau^+\tau^-$

Projections for HL-LHC

- Signal and background distributions **scaled** by the integrated luminosity Ο
- All distributions scaled to 14 TeV cross sections \cap
- Assuming the **same** detector performance, the same trigger threshold, same identification efficiency with same rejection
- **No degradation** from pile-up 0
- **b-tagging algorithm** (mv2c10) updated to the most recent ITk layout with improved c-jet rejection is considered
- **Finer binning** with respect to Run-2 for the BDT discriminant distribution
- **Multivariate discriminant BDT selection**
 - BDT discriminant is used to improve the separation of signal from Ο background, using 6 variables that provided good discrimination with minimal correlation
 - BDT distributions from the three signal regions, along with control region yields, form the inputs to the final fit

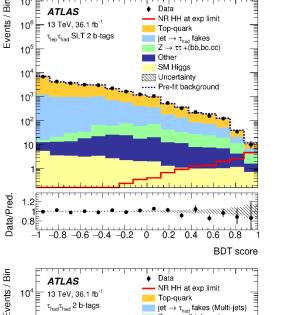
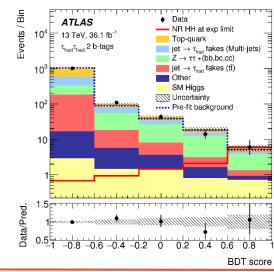



Fig.11: BDT discriminant distribution for signal and background samples, for the $\tau_{lep}\tau_{had}$ and $\tau_{had} \tau_{had}$

$hh ightarrow b\overline{b} au^+ au^-$

Systematic and statistical uncertainties

- Normalisation fixed to the best Run-2 fit values with corresponding uncertainties:
 - Z+Heavy-flavour, scaled up by 1.34 with normalization uncertainty of 12%
 - $t\bar{t}$ no change in normalization
 - $\tau_{had}\tau_{had}$ 37% up, 34% down; $\tau_{had}\tau_{had}$ 13%

Results scenarios

- Results considers four scenarios:
 - Full systematics
 - Full systematics, MC statistical uncertainty neglected
 - Stat-only
 - Baseline scenario: Z+Heavy-flavour and tt̄ scale down by a factor of 10 (negligible effect), and tt̄ H and VH scaled down to 10% (significant effect) and not considering MC stats. unc.

Significance:

channel	stat-only	systs	no MC stats	Baseline
$ au_{ m lep} au_{ m had}$	1.11	0.19	0.65	0.67
$ au_{ m had} au_{ m had}$	2.47	0.68	1.81	2.13
$b\bar{b} au^+ au^-$	2.71	0.71	1.92	2.27

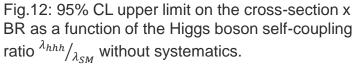
Table 1: Significance for each scenario.

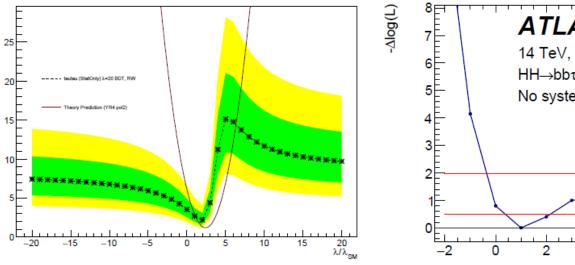
Data statistics	0.08	Table 2	
Full systematic unc	0.92	Fractio	
all normalizations	0.07	impact nuisan	
all but normalizations	0.86	param	
b-tagging	0.01	quadra	
jets and MET	0.01	subtra	
$ au_{ m had}$	0.02	total uncert	
fake $ au_{ m had}$ estimation	0.005	uncen	
Top Modeling	0.01		
$Z \to \tau \tau$	0.01		
SM Higgs Modeling	0.05		
MC stat	0.84		
Signal	0.01		

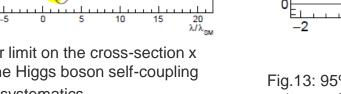
Table 2: Fractional impact of nuisance parameter sets, quadratically subtracted from total uncertainty.

Limits

- Signal and background distributions are modeled by WSMaker with its corresponding upper and lower limits calculation
- Likelihood scan


o Data has SM signal injected


	significance	$\lambda_{hhh}/\lambda_{SM}$
w/o syst.	2.71σ	[-0.3,7.7]
baseline	2.27σ	[-3.9,12.5]


9

σ_{hh} × BR_h

95% CL Limit on

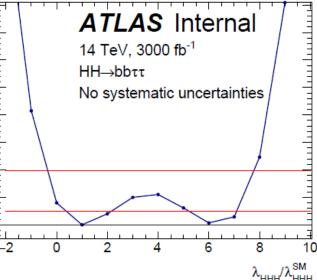
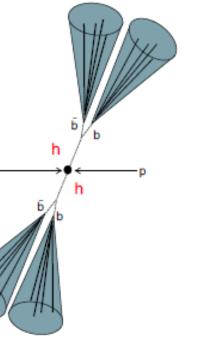


Fig.13: 95% CL upper limit on the log-likelihood ratio as a function of the Higgs boson self-coupling ratio $\frac{\lambda_{hhh}}{\lambda_{SM}}$ without systematics.

$hh \rightarrow b\overline{b}\tau^+\tau^-$


- Analysis is an extrapolation of the <u>Run-2 publication</u>, searching for non-resonant Higgs boson pair production using the "resolved" analysis method (not boosted, reconstruction of four b-jets), same as previous PUB Note
- Event selection:
 - Select four b-tagged R = 0.4 jets ($p_T > 40$ GeV, $|\eta| < 2.5$)
 - $\circ~$ Pair into two Higgs boson candidates

 $hh \rightarrow h\overline{h}h\overline{h}$

- Demand Higgs boson candidates satisfy requirements on p_T and $\Delta R(h, h)$
- Veto events with hadronic top candidates
- \circ Insist masses of both Higgs boson candidates are consistent with m_h

Background estimation:

- \circ Background dominated by multi-jet and $t\bar{t}$
- Difficult to model multi-jet background using MC simulation
- Multi-jet background modeled using data-driven methods
- Fit *m*_{4j} spectrum

$hh \rightarrow b\overline{b}b\overline{b}$

Projections for HL-LHC

• Extrapolation approach described in last year's <u>PUB note</u>

- Forced to do extrapolation because of lack of MC-based background samples, but projection has full systematic uncertainty treatment and was validated with real data
- Current Run-2 analysis performance will be maintained (ignores improvements from upgraded detector, except ITk, but neglects pile-up degradation)
- Statistical uncertainties
 - Signal and $t\bar{t}$ are taken from MC simulation (independent of $\int \mathcal{L}dt$), but multi-jet is data-driven (scales with $\int \mathcal{L}dt$)
- Systematic uncertainties
 - JER, b-tagging and luminosity are not statistically limited (independent of $\int \mathcal{L} dt$)

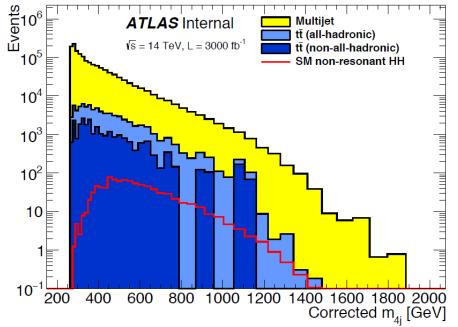


Fig.2: HL-LHC 3000 fb^{-1} extrapolated samples distribution; normalising $\sqrt{s} = 13 \rightarrow 14$ TeV and scaling by the expected ITk efficiency.

$hh \rightarrow b\overline{b}b\overline{b}$

- Systematic uncertainties
 - Multi-jet and $t\bar{t}$ modelling uncertainties decrease $\propto \int \mathcal{L} dt$
 - Systematic uncertainties lead to a worsening of sensitivity
 by a factor of 1.1 – 2.5
 - Fit can constrained largest impact nuisance parameters are by ~40%
 - Detector systematic have zero impact

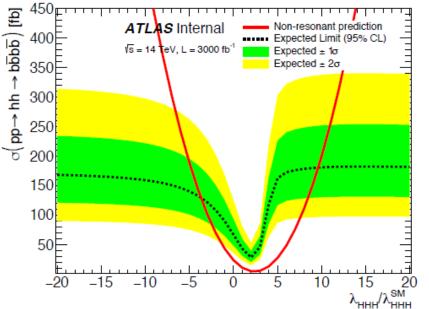


Fig.4: 95% CL upper limit on the cross-section as a function of the Higgs boson self-coupling ratio $\frac{\lambda_{hhh}}{\lambda_{SM}}$ including systematics.

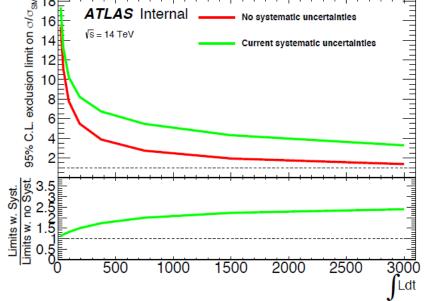


Fig.3: 95% CL upper limit on the cross-section as a function of the luminosity. Lower panel shows the ratio between the limit calculated without and with systematics.

	significance	$\lambda_{hhh}/\lambda_{SM}$
w/o syst.	Х	[-1.2, 8]
with syst	Х	[-4.1, 8.7]

 $hh \rightarrow b\overline{b}b\overline{b}$

• HL-LHC trigger minimum jet p_T threshold

- High pile-up events cause difficulties in maintaining high acceptance when triggering on multi-jets
- ATLAS HL-LHC trigger menu requires all four jets to have offline reconstruction $p_T > 75$ GeV
- This **degrades the sensitivity by 30%** relative to the current analysis threshold of $p_T > 30$ GeV; equivalent to reduce the integrated luminosity of the final dataset by 1500 fb^{-1}
- $\,\circ\,\,$ Systematics uncertainties increase by a factor of 2.5
- $\circ -2.6 < \frac{\lambda_{hhh}}{\lambda_{SM}} < 8.4 \text{ (w/o sys)}$ $\circ -4.8 < \frac{\lambda_{hhh}}{\lambda_{SM}} < 8.6 \text{ (with sys)}$
- Impact of ITk
 - \circ b-tagging efficiency improved by 1.375
 - Limit with systematics uncertainty improves from $3.7 \rightarrow 3.3$

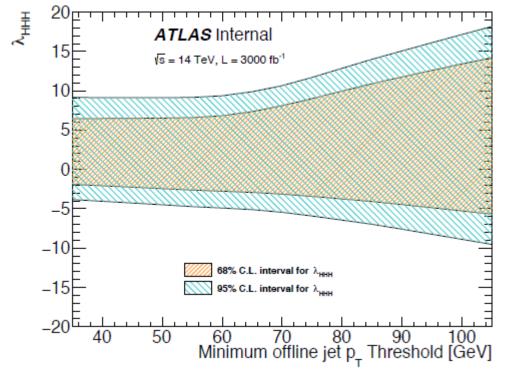


Fig.5: 95% CL upper limit on the Higgs boson self-coupling ratio as a function of the minimum offline jet p_T threshold including systematics.

Combination

- Independent statistical frameworks
 - Different statistical frameworks have been used for each channel, which complicates matters:
 - $hh \rightarrow b\overline{b}b\overline{b}$: HistFactory
 - $hh \rightarrow b\bar{b}\gamma\gamma$: HistFactory and Hfitter
 - $hh \rightarrow b\bar{b}\tau^+\tau^-$: WSMaker
- Combination tool
 - CombinationTool can handle workspaces created with different frameworks
 - There are inconsistencies in the treatment of NP (under study)
 - Results, for the moment, without systematics

	-2σ	-1σ	Exp.	+1σ	+2σ
bbbb	1.71	2.29	3.18	4.42	5.93
bbтт	0.553	0.743	1.03	1.52	2.08
bbyy	0.492	0.661	0.918	1.35	1.98
bbbb+bbtt+bbyy	0.495	0.665	0.923	1.28	1.72

Table 3: Limits on $\mu = \sigma / \sigma_{SM}$ for the combination of $hh \to b\bar{b}b\bar{b}$, $hh \to b\bar{b}\gamma\gamma$ and $hh \to b\bar{b}\tau^+\tau^-$ channels.

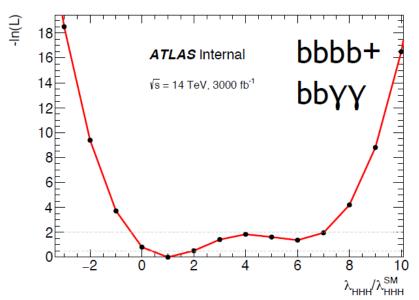


Fig.14: 95% CL upper limit on the log-likelihood ratio as a function of the Higgs boson self-coupling ratio $\lambda_{hhh}/\lambda_{SM}$ without systematics for the combination of $hh \rightarrow b\bar{b}b\bar{b}$ and $hh \rightarrow b\bar{b}\gamma\gamma$ channels.

- An update of the study for the measurement of the non-resonant Higgs boson pair production, using the combination of the $b\bar{b}b\bar{b}$, $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau^+\tau^-$ channels, with the ATLAS detector at the HL-LHC was presented
- Systematics uncertainties made a considerable impact on the sensitivity obtained by the $b\bar{b}b\bar{b}$ and $b\bar{b}\tau^+\tau^-$ analyses, while the consequence on the $b\bar{b}\gamma\gamma$ is almost negligible
- ATLAS di-Higgs prospects group is almost ready to finish the combination. If numbers agree with CMS group, then we could do a simple combination using 2 × CMS or ATLAS luminosity
- A naïve combination of $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau^+\tau^-$ gives a significance > 3σ with systematics

w/o	channel	significance	$\lambda_{hhh}/\lambda_{SM}$	with	channel	significance	$\lambda_{hhh}/\lambda_{SM}$
systematics	$b\overline{b}b\overline{b}$	Х	[-1.2, 8.0]	systematics	$b\overline{b}b\overline{b}$	Х	[-4.1, 8.7]
	$b\overline{b}\gamma\gamma$	2.34σ	[-1.03, 7.94]		$b\overline{b}\gamma\gamma$	2.29 <i>σ</i>	[-1.23, 8.08]
	$b \overline{b} \tau^+ \tau^-$	2.71 <i>σ</i>	[-0.3,7.7]		$b \overline{b} \tau^+ \tau^-$	0.71 <i>σ</i>	[-3.9,12.5]
	combined	Х	Х		combined	Х	Х

BACKUP

SM di-Higgs cross section

- Elisabeth noticed discrepancies between the cross-sections we are using for the di-Higgs production:
 - The $hh \rightarrow b\bar{b}\gamma\gamma$ channel has been using a total cross-section of 39.71 fb, which is an old value from a previous PUB Note
 - The twiki page of the LHC XS WG for the YR4 recommended a SM di-Higgs cross-section for ggF of 36.69 fb
 - The draft of the current YR recommended a total cross-section of 32.88 fb
 - Which numbers should we use?
 - Shall we use the ggF cross-section only (thinking that all analyses are using just this production mode), or the total cross-section?
 - How to parametrize the λ dependence? In the YR draft there are given cross-sections for different λ values, does it match with the morphing?
 - $\checkmark\,$ We are going to use the YR4 cross-sections since they are NNLO