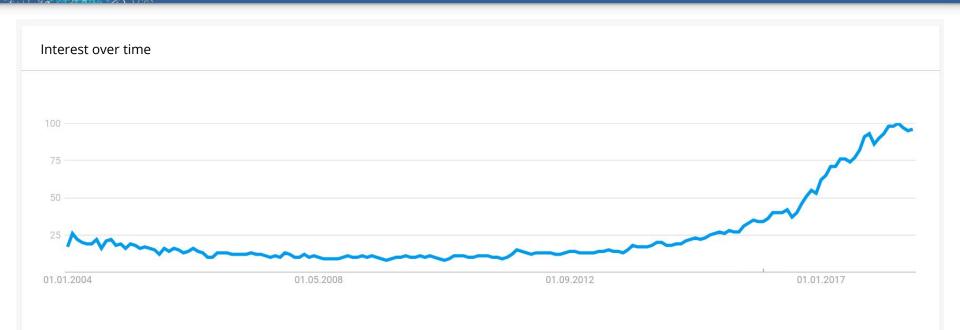
TMVA in the Future Adapting to the Modern Machine-Learning Landscape

Stefan Wunsch (stefan.wunsch@cern.ch) for the ROOT team

ROOT Data Analysis Framework https://root.cern

What has changed?



Popularity of the term "machine learning" on Google

The machine-learning workflow

Events of physics processes

Energy deposits in detector cells

Collect data

Transport data from physical device (HDD, file server, ...) to your environment (Python runtime, ...) Fit the free parameters of your model to data (weights of a NN, cuts defining trees in a BDT, ...)

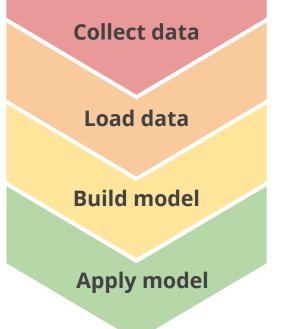
Apply trained model to new data (trigger, event classification, jet tagging, ...)

Build model

Apply model

Load data

Evolution of the ML landscape



Evolution of HEP x ML Engineering

ROOT Files	Data Layer	ROOT Files	DB / HDFS etc.
Ad hoc ROOT ETL logic	Loading Layer	Numpy / HDF5 Converters / Loaders	Numpy / HDF5 Converters / Loaders
TMVA	Training Layer	Keras, TensorFlow, PyTorch, XGBoost, scikit-learn,	Keras, TensorFlow, PyTorch, XGBoost, scikit-learn,
Deployment Target (TMVA)	Serving Layer	Deployment Target (lwtnn, TensorFlow, TMVA wrappers)	Deployment Target (TensorFlow Serving, SageMaker, etc.)
HEP (Circa 2013)		HEP (Circa 2018)	Industry

"Overview of ML in HEP" by Luke De Oliveira at the 2nd IML workshop in April 2018

Our vision for TMVA

Evolution of HEP x ML Engineering

ROOT Files	Data Layer	ROOT Files	ROOT Files
Ad hoc ROOT ETL logic	Loading Layer Nu	umpy / HDF5 Converters / Loaders	TMVA
TMVA	Training Layer	Keras, TensorFlow, PyTorch, XGBoost, scikit-learn,	Keras, TensorFlow, PyTorch, XGBoost, scikit-learn, TMVA ,
Deployment Target (TMVA)	Serving Layer	Deployment Target (lwtnn, TensorFlow, TMVA wrappers)	TMVA
HEP (Circa 2013)		HEP (Circa 2018)	HEP (Circa 2019)

Key ingredients

Evolution of HEP x ML Engineering			Load data	 Load data from many sources Filter data Define new variables Access data easily from Python
Ad hoc ROOT ETL logic TMVA	Loading Layer Numpy / HDF5 Converters / Loaders Training Layer Keras, TensorFlow, PyTorch, XGBoost, scikit-learn,	TMVA Keras, TensorFlow, PyTorch, XGBoost, scikit-learn, TMVA ,	Build model	 Solid baseline of ML methods Integration of (cutting-edge) external ML packages Mix-and-match between packages
Deployment Target (TMVA) HEP (Circa 2013)	Serving Layer Deployment Target (lwtnn, TensorFlow, TMVA wrappers) HEP (Circa 2018)	TMVA HEP (Circa 2019)	Apply model	 High throughput inference Fully accessible from C++ Plug-and-play for different models

Loading data with RDataFrame

- Load data from many sources
- Filter data
- Define new variables
- Access data easily from Python
- Key tool: ROOT dataframes
- Sources:

Load data

- ROOT
- CSV
- (xAOD)
- (SQLite)
- Remote file access:
 - xRootD
 - Davix

```
import ROOT
# Read a remote ROOT file via http
df = ROOT.RDataFrame(
  "Events"
  "http://root.cern.ch/files/NanoAOD_DoubleMuon_CMS20110penData.root"
# Reduce on the desired events
df_reduced = df.Filter("nMuon>=2")
# Define needed variables
df_newvar = df_reduced.Define("Muon_pt_leading", "Sorted(Muon_pt)[0]"
# Access data as numpy array
data = df_newvar.AsNumpy()
# Feed to any ML package
import awesome_ml
model = awesome_ml.Model()
model.fit(data)
```

Enrico's talk about declarative analysis in ROOT

Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users' Workshop 10-13 September 2018

6.14

ROOT

Available in

Future

On the way ...

Memory adoption of data from C++ containers with numpy arrays

```
import ROOT
import numpy
# Standard vector from C++ side of the application
x = ROOT.std.vector("float")((1, 2, 3))
# View on data as numpy array via memory adoption (zero copy)
numpy_array = numpy.asarray(x)
```

Read flat TTree as numpy.array

```
import ROOT
# Open remote file via http
file = ROOT.TFile.Open("http://root.cern.ch/files/tmva_class_example.root")
# Get tree with data
tree = file.Get("TreeS")
# Read data in tree as numpy.array
numpy_array = tree.AsMatrix(["var1", "var2", "var3", "var4"])
```

Enric's talk about PyROOT

Talk about memory adoption with numpy

Building ML models

- Solid baseline of ML methods
- Build model
- Integration of (cutting-edge) external ML packages
 - Mix-and-match between packages
- ML baseline: Methods of current TMVA
- Key points:
 - Modern interface
 - Modularity
 - Interoperability with numpy ≡
 Interoperability with external ML packages

```
import ROOT
import numpy as np
# Read a ROOT file
df = ROOT.RDataFrame("tree", "file.root")
# Access data as numpy arrays and build training dataset
x_sig = df.Filter("a>b && c!=d").AsNumpy()
x_bkg = df.Filter("e+f==g && h==i").AsNumpy()
x = numpy.stack([x_sig, x_bkg])
y = numpy.stack([np.ones(len(x_sig)), np.zeros(len(x_bkg)])
# Build TMVA model
bdt = ROOT.TMVA.BDT(num_trees=500, depth=3)
bdt.Fit(x, y)
bdt.Save("parameters.root")
# Build sklearn model
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
rf.fit(x, y)
```

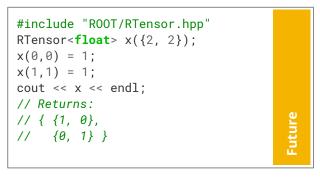
External package

*v*ailable

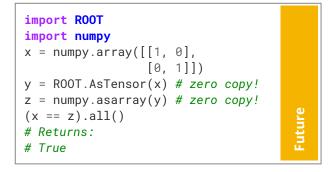
On the way ...

C++ container for multi-dimensional arrays

C++



Python



- Key feature for
 - design of modern C++ interfaces for ML, e.g., for batches or image data as input
 - interoperability with numpy as C++-side object

RTensor proposal talk

Apply trained ML model

- High throughput inference
- Fully accessible from C++
- Plug-and-play for different models
- Key points:

Apply model

• Fast inference,

especially event-by-event

- Being accessible from C++
- Loading parameters of externally trained models
- Interaction with RDataFrame

```
int main() {
```

```
// Load TMVA and models trained with external packages
auto bdt = ROOT::TMVA::BDT("parameters.root");
auto nn = ROOT::TMVA::Keras("parameters.h5");
```

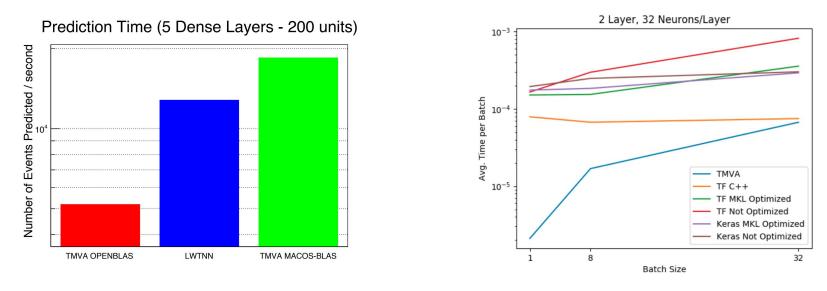
```
// Perform single prediction
vector<float> x = {1.0, 2.0, 3.0, 4.0};
vector<float> y = bdt.Predict(x);
```

```
// Append method responses to a ROOT dataframe
auto df = ROOT::RDataFrame("events", "some_file.root");
```

```
vector<string> vars = {"var1", "var2", "var3", "var4"};
auto df_response = df.Define("response_bdt", bdt, vars)
.Define("response_nn", nn, vars);
```


On the way ...

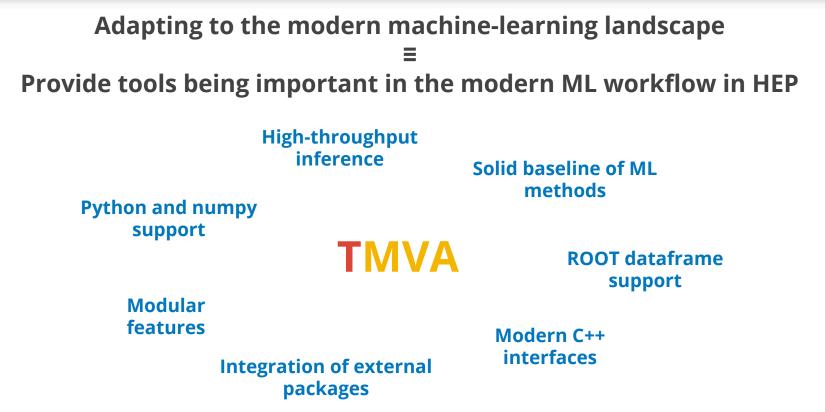
Fast event-by-event inference with TMVA's neural network implementation



CHEP talk by Kim Albertsson

Work by Alexandru Burlacu

Summary



Backup

Our vision for TMVA

Evolution of HEP x ML Engineering

ROOT Files	Data Layer ROOT Files	ROOT Files
Ad hoc ROOT ETL logic	Loading Layer Numpy / HDF5 Converters / Loaders	ΤΜ٧Α
TMVA	Training Layer Keras, TensorFlow, PyTorch, XGBoost, scikit-learn,	Keras, TensorFlow, PyTorch, XGBoost, scikit-learn, TMVA ,
Deployment Target (TMVA)	Serving Layer Deployment Target (lwtnn, TensorFlow, TMVA wrappers)	TMVA
HEP (Circa 2013)	HEP (Circa 2018)	HEP (Circa 2019)

- **T**oolkit for **M**ulti-**V**ariate **A**nalysis:
 - Focus on *supporting* users using ML in HEP
 - Glue between HEP and ML

Modularity

- Features as separated tools
- Mix-and-match with external packages
- Supports parallelism

Interoperability

- ML framework independent tools
- Excellent support equally for C++ and the Python ecosystem