
https://root.cern

ROOT
Data Analysis Framework

TMVA in the Future
Adapting to the Modern Machine-Learning Landscape

Stefan Wunsch (stefan.wunsch@cern.ch) for the ROOT team

https://root.cern


What has changed?

Popularity of the term “machine learning” on Google
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Interest over time

https://trends.google.com/trends/explore?date=all&q=machine%20learning


The machine-learning workflow

Events of physics 
processes

Energy deposits in 
detector cells

...

Transport data
from physical device 
(HDD, file server, …)
to your environment 
(Python runtime, …)

Fit the free 
parameters of your 
model to data 
(weights of a NN,
cuts defining trees in 
a BDT, ...)

Apply trained
model to new data
(trigger,
event classification, 
jet tagging, …)

Collect data Load data Build model Apply model

3Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018



Evolution of the ML landscape

"Overview of ML in HEP" by Luke De Oliveira at the 2nd IML workshop in April 2018

Collect data

Load data

Build model

Apply model
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https://indico.cern.ch/event/668017/contributions/2960342/attachments/1628860/2595349/iml-hep-ml-lukedeo.pdf


Our vision for TMVA

TMVA

TMVA

TMVA, ...

HEP (Circa 2019)
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Key ingredients

Apply model
● High throughput inference

● Fully accessible from C++

● Plug-and-play for different models

Load data

● Load data from many sources

● Filter data

● Define new variables

● Access data easily from Python

Build model

● Solid baseline of ML methods

● Integration of (cutting-edge) 

external ML packages

● Mix-and-match between packages
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Loading data with RDataFrame

import ROOT

# Read a remote ROOT file via http
df = ROOT.RDataFrame(
  "Events",
  "http://root.cern.ch/files/NanoAOD_DoubleMuon_CMS2011OpenData.root")

# Reduce on the desired events
df_reduced = df.Filter("nMuon>=2")

# Define needed variables
df_newvar = df_reduced.Define("Muon_pt_leading", "Sorted(Muon_pt)[0]")

# Access data as numpy array
data = df_newvar.AsNumpy()

# Feed to any ML package
import awesome_ml
model = awesome_ml.Model()
model.fit(data)

▶ Key tool: ROOT dataframes

▶ Sources:

● ROOT

● CSV

● (xAOD)

● (SQLite)

▶ Remote file access:

● xRootD

● Davix
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Enrico’s talk about declarative analysis in ROOT
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https://indico.cern.ch/event/697389/contributions/3062041/


On the way ...

import ROOT
import numpy

# Standard vector from C++ side of the application
x = ROOT.std.vector("float")((1, 2, 3))

# View on data as numpy array via memory adoption (zero copy)
numpy_array = numpy.asarray(x)
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Memory adoption of data from C++ containers with numpy arrays

import ROOT

# Open remote file via http
file = ROOT.TFile.Open("http://root.cern.ch/files/tmva_class_example.root")

# Get tree with data
tree = file.Get("TreeS")

# Read data in tree as numpy.array
numpy_array = tree.AsMatrix(["var1", "var2", "var3", "var4"]) A
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Read flat TTree as numpy.array

Enric’s talk about PyROOT

Talk about memory adoption 
with numpy
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https://indico.cern.ch/event/697389/contributions/3062048/
https://indico.cern.ch/event/712344/contributions/2925828/
https://indico.cern.ch/event/712344/contributions/2925828/


Building ML models

import ROOT
import numpy as np

# Read a ROOT file
df = ROOT.RDataFrame("tree", "file.root")

# Access data as numpy arrays and build training dataset
x_sig = df.Filter("a>b && c!=d").AsNumpy()
x_bkg = df.Filter("e+f==g && h==i").AsNumpy()
x = numpy.stack([x_sig, x_bkg])
y = numpy.stack([np.ones(len(x_sig)), np.zeros(len(x_bkg)])

# Build TMVA model
bdt = ROOT.TMVA.BDT(num_trees=500, depth=3)
bdt.Fit(x, y)
bdt.Save("parameters.root")

# Build sklearn model
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
rf.fit(x, y)

▶ ML baseline: Methods of current TMVA

▶ Key points:

● Modern interface

● Modularity

● Interoperability with numpy ≡

Interoperability with external ML 

packages
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On the way ...

10

#include "ROOT/RTensor.hpp"
RTensor<float> x({2, 2});
x(0,0) = 1;
x(1,1) = 1;
cout << x << endl;
// Returns:
// { {1, 0},
//   {0, 1} }
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C++ container for multi-dimensional arrays

▶ Key feature for

● design of modern C++ interfaces for ML, e.g., for batches or image data as input

● interoperability with numpy as C++-side object

import ROOT
import numpy
x = numpy.array([[1, 0],
                 [0, 1]])
y = ROOT.AsTensor(x) # zero copy!
z = numpy.asarray(y) # zero copy!
(x == z).all()
# Returns:
# True Fu

tu
re

C++ Python

RTensor proposal talk
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https://indico.cern.ch/event/750753/contributions/3107801/


Apply trained ML model
int main() {
  // Load TMVA and models trained with external packages
  auto bdt = ROOT::TMVA::BDT("parameters.root");
  auto nn = ROOT::TMVA::Keras("parameters.h5");

  // Perform single prediction
  vector<float> x = {1.0, 2.0, 3.0, 4.0};
  vector<float> y = bdt.Predict(x);

  // Append method responses to a ROOT dataframe
  auto df = ROOT::RDataFrame("events", "some_file.root");

  vector<string> vars = {"var1", "var2", "var3", "var4"};
  auto df_response = df.Define("response_bdt", bdt, vars)
                       .Define("response_nn", nn, vars);

  // Analyze the result
  auto h_bdt = df_response.Filter("response_bdt>0.5")
                          .Histo1D("mass");
  auto h_nn = df_response.Filter("response_nn>0.5")
                         .Histo1D("mass");
  h_bdt.Draw("histo");
  n_nn.Draw("same");
}

▶ Key points:

● Fast inference,

especially event-by-event

● Being accessible from C++

● Loading parameters of externally 

trained models

● Interaction with RDataFrame
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On the way ...

CHEP talk by Kim Albertsson
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Work by Alexandru Burlacu

Fast event-by-event inference with TMVA’s neural network implementation
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https://indico.cern.ch/event/587955/contributions/2937501/
https://slides.com/alexandruburlacu/benchmarking-tmva-package-against-tensorflow-on-event-by-event-inference-performance-on-multi-layered-perceptrons-for-hep#/


Summary
Adapting to the modern machine-learning landscape

≡
Provide tools being important in the modern ML workflow in HEP
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Modular 
features

Integration of external 
packages

TMVA
Python and numpy 

support

High-throughput 
inference

ROOT dataframe 
support

Solid baseline of ML 
methods

Modern C++ 
interfaces



Backup
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Our vision for TMVA

TMVA

TMVA

TMVA, ...

HEP (Circa 2019)
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▶ Toolkit for Multi-Variate Analysis:
● Focus on supporting users 

using ML in HEP
● Glue between HEP and ML

▶ Modularity
● Features as separated tools
● Mix-and-match with external 

packages
● Supports parallelism

▶ Interoperability
● ML framework independent 

tools
● Excellent support equally for 

C++ and the Python ecosystem


