
https://root.cern

ROOT
Data Analysis Framework

TMVA in the Future
Adapting to the Modern Machine-Learning Landscape

Stefan Wunsch (stefan.wunsch@cern.ch) for the ROOT team

https://root.cern

What has changed?

Popularity of the term “machine learning” on Google

2Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018

Interest over time

https://trends.google.com/trends/explore?date=all&q=machine%20learning

The machine-learning workflow

Events of physics
processes

Energy deposits in
detector cells

...

Transport data
from physical device
(HDD, file server, …)
to your environment
(Python runtime, …)

Fit the free
parameters of your
model to data
(weights of a NN,
cuts defining trees in
a BDT, ...)

Apply trained
model to new data
(trigger,
event classification,
jet tagging, …)

Collect data Load data Build model Apply model

3Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018

Evolution of the ML landscape

"Overview of ML in HEP" by Luke De Oliveira at the 2nd IML workshop in April 2018

Collect data

Load data

Build model

Apply model

4Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018

https://indico.cern.ch/event/668017/contributions/2960342/attachments/1628860/2595349/iml-hep-ml-lukedeo.pdf

Our vision for TMVA

TMVA

TMVA

TMVA, ...

HEP (Circa 2019)

5Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018

Key ingredients

Apply model
● High throughput inference

● Fully accessible from C++

● Plug-and-play for different models

Load data

● Load data from many sources

● Filter data

● Define new variables

● Access data easily from Python

Build model

● Solid baseline of ML methods

● Integration of (cutting-edge)

external ML packages

● Mix-and-match between packages

6Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018

Loading data with RDataFrame

import ROOT

Read a remote ROOT file via http
df = ROOT.RDataFrame(
 "Events",
 "http://root.cern.ch/files/NanoAOD_DoubleMuon_CMS2011OpenData.root")

Reduce on the desired events
df_reduced = df.Filter("nMuon>=2")

Define needed variables
df_newvar = df_reduced.Define("Muon_pt_leading", "Sorted(Muon_pt)[0]")

Access data as numpy array
data = df_newvar.AsNumpy()

Feed to any ML package
import awesome_ml
model = awesome_ml.Model()
model.fit(data)

▶ Key tool: ROOT dataframes

▶ Sources:

● ROOT

● CSV

● (xAOD)

● (SQLite)

▶ Remote file access:

● xRootD

● Davix
7

A
va

ila
bl

e
in

 R
O

O
T

6.
14

Fu
tu

re

Enrico’s talk about declarative analysis in ROOT

Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018

https://indico.cern.ch/event/697389/contributions/3062041/

On the way ...

import ROOT
import numpy

Standard vector from C++ side of the application
x = ROOT.std.vector("float")((1, 2, 3))

View on data as numpy array via memory adoption (zero copy)
numpy_array = numpy.asarray(x)

8

A
va

ila
bl

e
in

RO
O

T
6.

14

Memory adoption of data from C++ containers with numpy arrays

import ROOT

Open remote file via http
file = ROOT.TFile.Open("http://root.cern.ch/files/tmva_class_example.root")

Get tree with data
tree = file.Get("TreeS")

Read data in tree as numpy.array
numpy_array = tree.AsMatrix(["var1", "var2", "var3", "var4"]) A

va
ila

bl
e

in
RO

O
T

6.
14

Read flat TTree as numpy.array

Enric’s talk about PyROOT

Talk about memory adoption
with numpy

Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018

https://indico.cern.ch/event/697389/contributions/3062048/
https://indico.cern.ch/event/712344/contributions/2925828/
https://indico.cern.ch/event/712344/contributions/2925828/

Building ML models

import ROOT
import numpy as np

Read a ROOT file
df = ROOT.RDataFrame("tree", "file.root")

Access data as numpy arrays and build training dataset
x_sig = df.Filter("a>b && c!=d").AsNumpy()
x_bkg = df.Filter("e+f==g && h==i").AsNumpy()
x = numpy.stack([x_sig, x_bkg])
y = numpy.stack([np.ones(len(x_sig)), np.zeros(len(x_bkg)])

Build TMVA model
bdt = ROOT.TMVA.BDT(num_trees=500, depth=3)
bdt.Fit(x, y)
bdt.Save("parameters.root")

Build sklearn model
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
rf.fit(x, y)

▶ ML baseline: Methods of current TMVA

▶ Key points:

● Modern interface

● Modularity

● Interoperability with numpy ≡

Interoperability with external ML

packages

9

A
va

ila
bl

e
in

RO
O

T
6.

14
Fu

tu
re

Ex
te

rn
al

pa
ck

ag
e

Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018

On the way ...

10

#include "ROOT/RTensor.hpp"
RTensor<float> x({2, 2});
x(0,0) = 1;
x(1,1) = 1;
cout << x << endl;
// Returns:
// { {1, 0},
// {0, 1} }

Fu
tu

re

C++ container for multi-dimensional arrays

▶ Key feature for

● design of modern C++ interfaces for ML, e.g., for batches or image data as input

● interoperability with numpy as C++-side object

import ROOT
import numpy
x = numpy.array([[1, 0],
 [0, 1]])
y = ROOT.AsTensor(x) # zero copy!
z = numpy.asarray(y) # zero copy!
(x == z).all()
Returns:
True Fu

tu
re

C++ Python

RTensor proposal talk
Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018

https://indico.cern.ch/event/750753/contributions/3107801/

Apply trained ML model
int main() {
 // Load TMVA and models trained with external packages
 auto bdt = ROOT::TMVA::BDT("parameters.root");
 auto nn = ROOT::TMVA::Keras("parameters.h5");

 // Perform single prediction
 vector<float> x = {1.0, 2.0, 3.0, 4.0};
 vector<float> y = bdt.Predict(x);

 // Append method responses to a ROOT dataframe
 auto df = ROOT::RDataFrame("events", "some_file.root");

 vector<string> vars = {"var1", "var2", "var3", "var4"};
 auto df_response = df.Define("response_bdt", bdt, vars)
 .Define("response_nn", nn, vars);

 // Analyze the result
 auto h_bdt = df_response.Filter("response_bdt>0.5")
 .Histo1D("mass");
 auto h_nn = df_response.Filter("response_nn>0.5")
 .Histo1D("mass");
 h_bdt.Draw("histo");
 n_nn.Draw("same");
}

▶ Key points:

● Fast inference,

especially event-by-event

● Being accessible from C++

● Loading parameters of externally

trained models

● Interaction with RDataFrame

11

Fu
tu

re

Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018

On the way ...

CHEP talk by Kim Albertsson

12

Work by Alexandru Burlacu

Fast event-by-event inference with TMVA’s neural network implementation

Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018

https://indico.cern.ch/event/587955/contributions/2937501/
https://slides.com/alexandruburlacu/benchmarking-tmva-package-against-tensorflow-on-event-by-event-inference-performance-on-multi-layered-perceptrons-for-hep#/

Summary
Adapting to the modern machine-learning landscape

≡
Provide tools being important in the modern ML workflow in HEP

13Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018

Modular
features

Integration of external
packages

TMVA
Python and numpy

support

High-throughput
inference

ROOT dataframe
support

Solid baseline of ML
methods

Modern C++
interfaces

Backup

14

Our vision for TMVA

TMVA

TMVA

TMVA, ...

HEP (Circa 2019)

15Stefan Wunsch, TMVA in the Future: Adapting to the Modern Machine-Learning Landscape, ROOT Users’ Workshop 10-13 September 2018

▶ Toolkit for Multi-Variate Analysis:
● Focus on supporting users

using ML in HEP
● Glue between HEP and ML

▶ Modularity
● Features as separated tools
● Mix-and-match with external

packages
● Supports parallelism

▶ Interoperability
● ML framework independent

tools
● Excellent support equally for

C++ and the Python ecosystem

